-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblogs.js
85 lines (73 loc) · 5.05 KB
/
blogs.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
const PAEDFramework = [
"Price Action Energy Dynamics (PAED) Framework",
`<h1>Price Action Energy Dynamics (PAED) Framework</h1>
<p>The <strong>PAED</strong> framework is a first-principles method for efficient trading based on price action, inspired by the Hopfield neural network’s energy-minimization dynamics. This framework views price behavior as a system governed by energy functions, with stable market patterns as attractor states. Here's the concise yet complete documentation for reference.</p>
<hr>
<h2>1. Define the Problem</h2>
<p>Efficient trading involves recognizing patterns in price action data, predicting the next likely movement, and acting on it profitably. The PAED framework reduces this to <strong>pattern recognition</strong>, <strong>energy modeling</strong>, and <strong>decision-making</strong>.</p>
<h2>2. First Principles of Price Action</h2>
<ol>
<li><strong>Price Movement</strong>: Driven by supply-demand imbalances, representing collective shifts in market perception.</li>
<li><strong>Market Structure</strong>: Price action respects key zones (e.g., support/resistance) and trends due to herd psychology.</li>
<li><strong>Efficiency vs. Inefficiency</strong>: Markets are inefficient in the short term (opportunity) but efficient in the long term (randomness).</li>
</ol>
<h2>3. Energy-Based Modeling of Price Behavior</h2>
<h3>Energy Function</h3>
<p>The price dynamics are described by the energy function:</p>
<code>E = Trend Energy + Volatility Energy - Liquidity Flow.</code>
<ol>
<li><strong>Trend Energy</strong>: Captures directional movement (momentum):
<code>Trend Energy = -α ∑<sub>t</sub> (P<sub>t</sub> - P<sub>t-1</sub>),</code>
where <code>α</code> controls trend-following strength.
</li>
<li><strong>Volatility Energy</strong>: Models random fluctuations:
<code>Volatility Energy = β ∑<sub>t</sub> (P<sub>t</sub> - μ)<sup>2</sup>,</code>
where <code>μ</code> is the local average price, and <code>β</code> adjusts sensitivity.
</li>
<li><strong>Liquidity Flow</strong>: Captures the effect of large orders/news:
<code>Liquidity Flow = -γ ∑<sub>t</sub> Volume<sub>t</sub> · ΔP<sub>t</sub>,</code>
where <code>Volume<sub>t</sub></code> is trade volume, and <code>ΔP<sub>t</sub></code> is the price change.
</li>
</ol>
<h3>State Updates</h3>
<p>Define price states <code>P<sub>t</sub></code> and update them to minimize energy:</p>
<code>P<sub>t+1</sub> = P<sub>t</sub> + η ∂E/∂P<sub>t</sub>,</code>
where <code>η</code> is the step size for adjustments.
<h2>4. Recognizing and Storing Market Patterns</h2>
<h3>Stable States as Patterns</h3>
<p>Repeatable price patterns (e.g., trends, reversals) are encoded as <strong>local energy minima</strong>. The weights of price levels are defined using a Hebbian-like learning rule:</p>
<code>w<sub>ij</sub> = (1/N) ∑<sub>μ</sub> (ΔP<sub>i</sub><sup>μ</sup> ΔP<sub>j</sub><sup>μ</sup>),</code>
reinforcing levels frequently co-active during specific patterns.
<h3>Attractor Dynamics</h3>
<p>When price approaches a stored pattern (e.g., double top), it converges to that attractor. Spurious states (random noise) are minimized through appropriate parameter tuning.</p>
<h2>5. Decision-Making and Risk Management</h2>
<h3>Actionable Trading Rules</h3>
<ol>
<li><strong>Entry Signal</strong>: Enter when price approaches a stable state and Signal Strength exceeds a noise threshold:
<code>Signal Strength = ∑<sub>i</sub> w<sub>ij</sub> ΔP<sub>i</sub> - Noise Threshold.</code>
</li>
<li><strong>Exit Signal</strong>: Exit at local energy minima or when noise dominates:
<code>ΔE ≈ 0 or |Volatility Energy| > |Trend Energy|.</code>
</li>
<li><strong>Stop-Loss</strong>: Dynamically set using volatility:
<code>Stop-Loss Level = P<sub>t</sub> ± √(Volatility Energy).</code>
</li>
</ol>
<h2>6. Convergence Guarantees</h2>
<ol>
<li>The energy function <code>E</code> is bounded and decreases with each price update, ensuring convergence to a stable pattern.</li>
<li>The symmetric weight matrix <code>w<sub>ij</sub></code> prevents oscillations and ensures the system settles into attractors.</li>
</ol>
<h2>7. Practical Implementation</h2>
<h3>Steps to Build the PAED Framework</h3>
<ol>
<li><strong>Data Preparation</strong>: Use historical price and volume data to compute <code>α, β, γ</code>.</li>
<li><strong>Pattern Encoding</strong>: Train the system using a Hebbian-like rule to store market patterns as weights.</li>
<li><strong>Energy Minimization</strong>: Use gradient descent to model price evolution and identify attractors.</li>
<li><strong>Backtesting</strong>: Test the framework across datasets to validate profitability and refine thresholds.</li>
</ol>
<h2>Summary</h2>
<p>The PAED framework models price action as a system minimizing energy, with trends, volatility, and liquidity influencing dynamics. Patterns are encoded as attractor states, and actionable signals are derived by interpreting system behavior.</p>
`,
"Fractal Dev"
];