-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
282 lines (238 loc) · 11.9 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# Define server logic required to draw a histogram
shinyServer(function(input, output) {
output$plot1 <- renderImage({
# Return a list containing the filename
list(src = "gganim.gif",
contentType = 'image/gif',
width = 1600,
height = 700,
alt = "This is alternate text")
},deleteFile = FALSE)
output$barPlot_1_1 <- renderPlot({
usPermVisas %>%
filter(case_status == 'Certified') %>%
group_by(state) %>%
summarise(Count = n()) %>%
arrange(desc(Count)) %>%
mutate(state = reorder(state, Count)) %>%
head(20) %>%
ggplot(aes(x = state,y = Count)) +
geom_bar(stat='identity',colour="white", fill =fillColor) +
geom_text(aes(x = state, y = 1, label = paste0("(",Count,")",sep="")),
hjust=0, vjust=.5, size = 6, colour = 'black',
fontface = 'bold') +
labs(x = 'State', y = 'Count Of Visa Applications',
title = 'The Top 20 States Hiring Foreign Workers') +
coord_flip() +
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.position = "none",
panel.background = element_blank(),
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
plot.subtitle = element_text(face = "italic", size = 16, margin = margin(b = 0.5, unit = "cm"))
)
})
output$barPlot_1_2 <- renderPlot({
usPermVisas %>%
filter(case_status == 'Certified') %>%
group_by(employer_city) %>%
summarise(Count = n()) %>%
arrange(desc(Count)) %>%
mutate(city = reorder(employer_city, Count)) %>%
head(20) %>%
ggplot(aes(x = city, y = Count)) +
geom_bar(stat='identity',colour="white", fill =fillColor2) +
geom_text(aes(x = city, y = 1, label = paste0("(",Count,")",sep="")),
hjust=0, vjust=.5, size = 6, colour = 'black',
fontface = 'bold') +
labs(x = 'City', y = 'Count of Visa Applications',
title = 'The Top 20 Citys Hiring Foreign Workers') +
coord_flip() +
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.position = "none",
panel.background = element_blank(),
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
plot.subtitle = element_text(face = "italic", size = 16, margin = margin(b = 0.5, unit = "cm"))
)
})
output$barPlot_1_3 <- renderPlot({
usPermVisas %>%
filter(if (input$state_1 == 'ALL') case_status == 'Certified'
else state == input$state_1 & case_status == 'Certified') %>%
group_by(employer_name) %>%
summarise(CountOfEmployerName = n()) %>%
arrange(desc(CountOfEmployerName)) %>%
mutate(employer_name = reorder(employer_name, CountOfEmployerName)) %>%
head(20) %>%
ggplot(aes(x = employer_name,y = CountOfEmployerName)) +
geom_bar(stat='identity',colour="white", fill =fillColor) +
geom_text(aes(x = employer_name, y = 1, label = paste0("(",CountOfEmployerName,")",sep="")),
hjust=0, vjust=.5, size = 6, colour = 'black',
fontface = 'bold') +
labs(x = 'Employer Name', y = 'Count Of Visa Applications',
title = 'The Top 20 Employers hiring foreign workers') +
coord_flip() +
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.position = "none",
panel.background = element_blank(),
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
plot.subtitle = element_text(face = "italic", size = 16, margin = margin(b = 0.5, unit = "cm"))
)
})
output$barPlot_1_4 <- renderPlot({
usPermVisas %>%
filter(case_status == 'Certified' & class_of_admission != "Not in USA") %>%
filter(!is.na(country_of_citizenship) & !is.na(class_of_admission)) %>%
group_by(country_of_citizenship,class_of_admission) %>%
summarise(CountOfCountry = n()) %>%
arrange(desc(CountOfCountry)) %>%
head(20) %>%
ggplot(aes(x = country_of_citizenship,y = CountOfCountry, fill = class_of_admission)) +
geom_bar(stat='identity',colour="white") +
labs(x = 'Country', y = 'Count Of Visa Applications', title = 'Class of Visa Admission by Country',
subtitles = paste0(
"The E-2 Investor Visa allows an individual to enter and work inside of the United States \n",
"The F-1 visa allows students study in the U.S. \n",
"The H1-B is the most common visa for skilled workders to stay temporarily \n",
"The L-1 is a short-period work visa\n",
"The TN is a kind of special work visa only for the citizens in Mexico and Canada")) +
coord_flip() +
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.title = element_text(size = 20),
legend.text = element_text(size = 16),
panel.background = element_blank(),
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
plot.subtitle = element_text(face = "italic", size = 12, margin = margin(b = 0.5, unit = "cm"))
)
})
output$cloud <- renderWordcloud2({
# Add the draw button as a dependency to
# cause the word cloud to re-render on click
input$draw
isolate({
if (input$word == 'job'){
create_wordcloud(job, num_words = input$num, background = input$col)
} else {
create_wordcloud(education, num_words = input$num, background = input$col)
}
})
})
output$lineplot <- renderPlot({
usPermVisas %>%
filter(job_info_education != 'None') %>%
filter(case_status %in% c('Certified','Certified-Expired')) %>%
count(case_received_year, job_info_education, name = "degree_count") %>%
ggplot(aes(x=case_received_year, y=degree_count, group=job_info_education, color=job_info_education)) +
geom_line() +
geom_point() +
scale_color_hue('job_info_education') +
ggtitle("The Change in The Education of Applicants over the years") +
theme_ipsum() +
xlab("Year") +
ylab("Count") +
theme(
legend.text = element_text(size = 14)
)
})
output$histplot <- renderPlot({
breaks = seq(0,300000,40000)
usPermVisas %>%
filter(case_status == 'Certified' ) %>%
ggplot(aes(wage)) +
scale_x_continuous(limits = c(0, 300000),breaks=breaks ) +
geom_histogram(binwidth = 10000,,fill = c("red")) +
labs(x = 'Dollor', y = 'Count',
title = 'Distribution of The Wage for The Applicants',
subtitle = "The salary for most foreign workers were around from 60K to 120k") +
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.position = "none",
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
)
})
output$bi_barplot <- renderPlot({
foreign_local_wage %>%
ggplot(aes(x = reorder(job_title, difference), y = difference,
fill = difference > 0))+
geom_bar(stat = "identity")+
coord_flip()+
labs(x = "Job Title", y = "Wage_Change_Percentage",
title = "Compared to The Mean Salary in Glassdoor by The Job Positions",
subtitles = paste0(
"For most positions, the foreign workers were slightly paid more than the mean salary in glassdoor\n",
"In the sophisticated field, they were well less paid. \n"))+
theme(
text = element_text(color = "#4e4d47", size = 14),
axis.text.y = element_text(face = "bold"),
axis.text.x = element_text(vjust = -0.75),
axis.title = element_text(size=20),
axis.ticks = element_blank(),
legend.position = "none",
legend.title = element_text(size = 20),
legend.text = element_text(size = 16),
panel.background = element_blank(),
panel.grid.major.y = element_line(colour = light_gray, size = 1),
plot.title = element_text(face = "bold", size = 20),
plot.subtitle = element_text(face = "italic", size = 14, margin = margin(b = 0.5, unit = "cm"))
)+
guides(fill = FALSE)
})
output$dumbbell_1 <- renderPlot({
dumbbell_count
})
output$dumbbell_2 <- renderPlot({
dumbbell_wage
})
output$dumbbell_3 <- renderPlot({
dumbbell_time
})
output$sankey_1 <- renderSankeyNetwork({
sankeyNetwork(Links = degree_sankey, Nodes = nodes_1,
Source = "IDsource", Target = "IDtarget",
Value = "value", NodeID = "name",
sinksRight=FALSE, colourScale=ColourScal, nodeWidth=40, fontSize=13, nodePadding=20)
})
output$sankey_2 <- renderSankeyNetwork({
sankeyNetwork(Links = class_sankey, Nodes = nodes_2,
Source = "IDsource", Target = "IDtarget",
Value = "value", NodeID = "name",
sinksRight=FALSE, colourScale=ColourScal, nodeWidth=40, fontSize=13, nodePadding=20)
})
})