-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdifferential gene expression 24h 4su.R
70 lines (52 loc) · 1.93 KB
/
differential gene expression 24h 4su.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
res <- run_standard_deseq("C:/Users/mlomb/OneDrive/Desktop/MRes project/Differential Expression/cortical_4su",
base_grep = "0",
contrast_grep = "24",
grep_pattern = "^Ctrl_\\d_(0|24)",
baseName = "zero",
contrastName = '4suLabelled')
make_volcano_plot(res$results_table)
results <- res$results_table
filtered_res <- filter(results, padj < 0.1 )
ordered_res <- arrange(filtered_res, desc(abs(log2FoldChange)))
top_30 <- head(ordered_res, 30) %>%
select(gene_name)
add_name_to_plot(res$results_table, gene_names = top_30$gene_name)
#Now I am doing a GO analysis on this data
library(clusterProfiler)
data(filtered_res)
gene <- names(filtered_res[abs(filtered_res) > 2])
head(gene)
ggo <- groupGO(gene = gene,
OrgDb = org.Hs.eg.db,
ont = "CC",
level = 3,
readable = TRUE)
head (ggo)
ego <- enrichGO(gene = gene,
universe = names(geneList),
OrgDb = org.Hs.eg.db,
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE)
head(ego)
gene.df <- bitr(gene, fromType = "ENTREZID",
toType = c("ENSEMBL", "SYMBOL"),
OrgDb = org.Hs.eg.db)
ego2 <- enrichGO(gene = gene.df$ENSEMBL,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
head(ego2, 3)
ego3 <- gseGO(filtered_res = filtered_res,
OrgDb = org.Hs.eg.db,
ont = "CC",
minGSSize = 100,
maxGSSize = 500,
pvalueCutoff = 0.05,
verbose = FALSE)
goplot(ego)