forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
executable file
·565 lines (481 loc) · 28.9 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#!/usr/bin/env python3
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import ctypes
import json
import numpy as np
import os
import os.path
import re
import sys
import time
import onnx
import pycuda.autoinit
# TensorRT
import tensorrt as trt
from helpers.calibrator import BertCalibrator as BertCalibrator
from builder_utils import load_tf_weights, load_pytorch_weights_and_quant, load_onnx_weights_and_quant
from builder_utils import WQKV, BQKV # Attention Keys
from builder_utils import W_AOUT, B_AOUT, W_MID, B_MID, W_LOUT, B_LOUT # Transformer Keys
from builder_utils import SQD_W, SQD_B # SQuAD Output Keys
"""
TensorRT Initialization
"""
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
trt_version = [int(n) for n in trt.__version__.split('.')]
# Import necessary plugins for demoBERT
plugin_lib_name = "nvinfer_plugin.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
env_name_to_add_path = "PATH" if sys.platform == "win32" else "LD_LIBRARY_PATH"
handle = ctypes.CDLL(plugin_lib_name, mode=ctypes.RTLD_GLOBAL)
if not handle:
raise RuntimeError("Could not load plugin library. Is `{}` on your {}?".format(plugin_lib_name, env_name_to_add_path))
trt.init_libnvinfer_plugins(TRT_LOGGER, "")
plg_registry = trt.get_plugin_registry()
emln_plg_creator = plg_registry.get_plugin_creator("CustomEmbLayerNormPluginDynamic", "1", "")
qkv2_plg_creator = plg_registry.get_plugin_creator("CustomQKVToContextPluginDynamic", "1", "")
skln_plg_creator = plg_registry.get_plugin_creator("CustomSkipLayerNormPluginDynamic", "1", "")
fc_plg_creator = plg_registry.get_plugin_creator("CustomFCPluginDynamic", "1", "")
class BertConfig:
def __init__(self, bert_config_path, use_fp16, use_int8, use_strict, use_fc2_gemm, use_int8_skipln, use_int8_multihead, use_qat, use_sparsity, timing_cache):
with open(bert_config_path, "r") as f:
data = json.load(f)
self.num_attention_heads = data["num_attention_heads"]
self.hidden_size = data["hidden_size"]
self.intermediate_size = data["intermediate_size"]
self.num_hidden_layers = data["num_hidden_layers"]
self.head_size = self.hidden_size // self.num_attention_heads
self.use_fp16 = use_fp16
self.use_int8 = use_int8
self.use_fc2_gemm = use_fc2_gemm
self.use_strict = use_strict
self.use_int8_skipln = use_int8_skipln
self.use_int8_multihead = use_int8_multihead
self.is_calib_mode = False
self.use_qat = use_qat
self.use_sparsity = use_sparsity
self.timing_cache = timing_cache
def set_tensor_name(tensor, prefix, name):
tensor.name = prefix + name
def set_output_name(layer, prefix, name, out_idx = 0):
set_tensor_name(layer.get_output(out_idx), prefix, name)
def set_output_range(layer, maxval, out_idx = 0):
layer.get_output(out_idx).set_dynamic_range(-maxval, maxval)
def get_mha_dtype(config):
dtype = trt.float32
if config.use_fp16:
dtype = trt.float16
# Multi-head attention doesn't use INT8 inputs and output by default unless it is specified.
if config.use_int8 and config.use_int8_multihead and not config.is_calib_mode:
dtype = trt.int8
return int(dtype)
def attention_layer_opt(prefix, config, init_dict, network, input_tensor, imask):
"""
Add the attention layer
"""
assert(len(input_tensor.shape) == 5)
B, S, hidden_size, _, _ = input_tensor.shape
num_heads = config.num_attention_heads
head_size = int(hidden_size / num_heads)
Wall = init_dict[prefix + WQKV]
Ball = init_dict[prefix + BQKV]
# FC_attention
if config.use_int8:
mult_all = network.add_convolution_nd(input_tensor, 3 * hidden_size, (1, 1), Wall, Ball)
else:
mult_all = network.add_fully_connected(input_tensor, 3 * hidden_size, Wall, Ball)
if config.use_qat:
dr_qkv = max(
init_dict[prefix + 'self_qv_a_input_quantizer_amax'],
init_dict[prefix + 'self_qv_b_input_quantizer_amax'],
init_dict[prefix + 'self_av_b_input_quantizer_amax'],
)
set_output_range(mult_all, dr_qkv)
set_output_name(mult_all, prefix, "qkv_mult")
has_mask = imask is not None
# QKV2CTX
pf_type = trt.PluginField("type_id", np.array([get_mha_dtype(config)], np.int32), trt.PluginFieldType.INT32)
pf_hidden_size = trt.PluginField("hidden_size", np.array([hidden_size], np.int32), trt.PluginFieldType.INT32)
pf_num_heads = trt.PluginField("num_heads", np.array([num_heads], np.int32), trt.PluginFieldType.INT32)
pf_has_mask = trt.PluginField("has_mask", np.array([has_mask], np.int32), trt.PluginFieldType.INT32)
if config.use_qat:
dr_probs = init_dict[prefix + 'self_av_a_input_quantizer_amax']
dq_probs = dr_probs / 127.0
pf_dq_probs = trt.PluginField("dq_probs", np.array([dq_probs], np.float32), trt.PluginFieldType.FLOAT32)
pfc = trt.PluginFieldCollection([pf_hidden_size, pf_num_heads, pf_has_mask, pf_type, pf_dq_probs])
else:
pfc = trt.PluginFieldCollection([pf_hidden_size, pf_num_heads, pf_has_mask, pf_type])
qkv2ctx_plug = qkv2_plg_creator.create_plugin("qkv2ctx", pfc)
qkv_in = [mult_all.get_output(0)]
if has_mask:
qkv_in.append(imask)
qkv2ctx = network.add_plugin_v2(qkv_in, qkv2ctx_plug)
if config.use_qat:
dr_ctx = init_dict[prefix + 'output_dense_input_amax']
set_output_range(qkv2ctx, dr_ctx)
set_output_name(qkv2ctx, prefix, "context_layer")
return qkv2ctx
def skipln(prefix, config, init_dict, network, input_tensor, skip, bias=None):
"""
Add the skip layer
"""
idims = input_tensor.shape
assert len(idims) == 5
hidden_size = idims[2]
dtype = trt.float32
if config.use_fp16:
dtype = trt.float16
# Skip layernorm doesn't use INT8 inputs and output by default unless it is specified.
if config.use_int8 and config.use_int8_skipln and not config.is_calib_mode:
dtype = trt.int8
pf_ld = trt.PluginField("ld", np.array([hidden_size], np.int32), trt.PluginFieldType.INT32)
wbeta = init_dict[prefix + "beta"]
pf_beta = trt.PluginField("beta", wbeta.numpy(), trt.PluginFieldType.FLOAT32)
wgamma = init_dict[prefix + "gamma"]
pf_gamma = trt.PluginField("gamma", wgamma.numpy(), trt.PluginFieldType.FLOAT32)
pf_type = trt.PluginField("type_id", np.array([int(dtype)], np.int32), trt.PluginFieldType.INT32)
fields = [pf_ld, pf_beta, pf_gamma, pf_type ]
if bias:
pf_bias = trt.PluginField("bias", bias.numpy(), trt.PluginFieldType.FLOAT32)
fields.append(pf_bias)
pfc = trt.PluginFieldCollection(fields)
skipln_plug = skln_plg_creator.create_plugin("skipln", pfc)
skipln_inputs = [input_tensor, skip]
layer = network.add_plugin_v2(skipln_inputs, skipln_plug)
return layer
# Custom FC plugin is faster than native FC only on older architectures.
def use_custom_fc():
cc = pycuda.autoinit.device.compute_capability()
return cc[0] * 10 + cc[1] <= 70
def custom_fc(config, network, input_tensor, out_dims, W):
pf_out_dims = trt.PluginField("out_dims", np.array([out_dims], dtype=np.int32), trt.PluginFieldType.INT32)
pf_W = trt.PluginField("W", W.numpy(), trt.PluginFieldType.FLOAT32)
pf_type = trt.PluginField("type_id", np.array([1 if config.use_fp16 else 0], np.int32), trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection([pf_out_dims, pf_W, pf_type])
fc_plugin = fc_plg_creator.create_plugin("fcplugin", pfc)
plug_inputs = [input_tensor]
out_dense = network.add_plugin_v2(plug_inputs, fc_plugin)
return out_dense
def transformer_layer_opt(prefix, config, init_dict, network, input_tensor, imask):
"""
Add the transformer layer
"""
idims = input_tensor.shape
assert len(idims) == 5
hidden_size = idims[2]
if config.use_qat:
dr_input = init_dict[prefix + 'attention_self_query_input_amax']
assert(dr_input ==init_dict[prefix + 'attention_self_key_input_amax'] )
assert(dr_input ==init_dict[prefix + 'attention_self_value_input_amax'] )
input_tensor.set_dynamic_range(-dr_input, dr_input)
context_transposed = attention_layer_opt(prefix + "attention_", config, init_dict, network, input_tensor, imask)
attention_heads = context_transposed.get_output(0)
# FC0
B_aout = init_dict[prefix + B_AOUT]
if config.use_int8:
W_aout = init_dict[prefix + W_AOUT]
attention_out_fc = network.add_convolution_nd(attention_heads, hidden_size, (1, 1), W_aout, B_aout)
B_aout = None
if not config.use_int8_skipln:
attention_out_fc.set_output_type(0, trt.DataType.HALF if config.use_fp16 else trt.DataType.FLOAT)
if config.use_qat:
dr_fc_aout = init_dict[prefix + 'attention_output_add_local_input_quantizer_amax']
set_output_range(attention_out_fc, dr_fc_aout)
elif use_custom_fc():
W_aoutT = init_dict[prefix + W_AOUT + "_notrans"]
attention_out_fc = custom_fc(config, network, attention_heads, hidden_size, W_aoutT)
else:
W_aout = init_dict[prefix + W_AOUT]
attention_out_fc = network.add_fully_connected(attention_heads, hidden_size, W_aout, B_aout)
B_aout = None
skiplayer = skipln(prefix + "attention_output_layernorm_",config, init_dict, network, attention_out_fc.get_output(0), input_tensor, B_aout)
attention_ln = skiplayer.get_output(0)
if config.use_qat:
dr_skln1 = init_dict[prefix + 'intermediate_dense_input_amax']
set_output_range(skiplayer, dr_skln1)
# FC1 + GELU
B_mid = init_dict[prefix + B_MID]
W_mid = init_dict[prefix + W_MID]
if config.use_int8:
mid_dense = network.add_convolution_nd(attention_ln, config.intermediate_size, (1, 1), W_mid, B_mid)
else:
mid_dense = network.add_fully_connected(attention_ln, config.intermediate_size, W_mid, B_mid)
mid_dense_out = mid_dense.get_output(0)
POW = network.add_constant((1, 1, 1, 1, 1), trt.Weights(np.ascontiguousarray([3.0], dtype=np.float32)))
MULTIPLY = network.add_constant((1, 1, 1, 1, 1), trt.Weights(np.ascontiguousarray([0.044715], dtype=np.float32)))
SQRT = network.add_constant((1, 1, 1, 1, 1), trt.Weights((np.ascontiguousarray([0.79788456080286535587989211986876], dtype=np.float32))))
ONE = network.add_constant((1, 1, 1, 1, 1), trt.Weights((np.ascontiguousarray([1.0], dtype=np.float32))))
HALF = network.add_constant((1, 1, 1, 1, 1), trt.Weights((np.ascontiguousarray([0.5], dtype=np.float32))))
X_pow = network.add_elementwise(mid_dense_out, POW.get_output(0), trt.ElementWiseOperation.POW)
X_pow_t = X_pow.get_output(0)
X_mul = network.add_elementwise(X_pow_t, MULTIPLY.get_output(0), trt.ElementWiseOperation.PROD)
X_add = network.add_elementwise(mid_dense_out, X_mul.get_output(0), trt.ElementWiseOperation.SUM)
X_sqrt = network.add_elementwise(X_add.get_output(0), SQRT.get_output(0), trt.ElementWiseOperation.PROD)
X_sqrt_tensor = X_sqrt.get_output(0)
X_tanh = network.add_activation(X_sqrt_tensor, trt.ActivationType.TANH)
X_tanh_tensor = X_tanh.get_output(0)
X_one = network.add_elementwise(X_tanh_tensor, ONE.get_output(0), trt.ElementWiseOperation.SUM)
CDF = network.add_elementwise(X_one.get_output(0), HALF.get_output(0), trt.ElementWiseOperation.PROD)
gelu_layer = network.add_elementwise(CDF.get_output(0), mid_dense_out, trt.ElementWiseOperation.PROD)
intermediate_act = gelu_layer.get_output(0)
set_tensor_name(intermediate_act, prefix, "gelu")
if config.use_int8:
if config.use_qat:
dr_gelu = init_dict[prefix + 'output_dense_input_amax']
set_output_range(gelu_layer, dr_gelu)
else:
# use gelu10 according to whitepaper http://arxiv.org/abs/2004.09602
set_output_range(gelu_layer, 10)
# FC2
# Dense to hidden size
B_lout = init_dict[prefix + B_LOUT]
if config.use_int8 and not config.use_fc2_gemm:
W_lout = init_dict[prefix + W_LOUT]
out_dense = network.add_convolution_nd(intermediate_act, hidden_size, (1, 1), W_lout, B_lout)
B_lout = None
if not config.use_int8_skipln:
out_dense.set_output_type(0, trt.DataType.HALF if config.use_fp16 else trt.DataType.FLOAT)
elif use_custom_fc():
W_loutT = init_dict[prefix + W_LOUT + "_notrans"]
out_dense = custom_fc(config, network, intermediate_act, hidden_size, W_loutT)
else:
W_lout = init_dict[prefix + W_LOUT]
out_dense = network.add_fully_connected(intermediate_act, hidden_size, W_lout, B_lout)
B_lout = None
if config.use_qat:
dr_fc_out = init_dict[prefix + 'output_add_local_input_quantizer_amax']
set_output_range(out_dense, dr_fc_out)
set_output_name(out_dense, prefix + "output_", "dense")
out_layer = skipln(prefix + "output_layernorm_", config, init_dict, network, out_dense.get_output(0), attention_ln, B_lout)
set_output_name(out_layer, prefix + "output_", "reshape")
return out_layer
def bert_model(config, init_dict, network, input_tensor, input_mask):
"""
Create the bert model
"""
prev_input = input_tensor
for layer in range(0, config.num_hidden_layers):
ss = "l{}_".format(layer)
out_layer = transformer_layer_opt(ss, config, init_dict, network, prev_input, input_mask)
prev_input = out_layer.get_output(0)
if config.use_qat:
dr_out = init_dict["bert_encoder_final_input_quantizer_amax"]
set_output_range(out_layer, dr_out)
return prev_input
def squad_output(prefix, config, init_dict, network, input_tensor):
"""
Create the squad output
"""
idims = input_tensor.shape
assert len(idims) == 5
B, S, hidden_size, _, _ = idims
W_out = init_dict[prefix + SQD_W]
B_out = init_dict[prefix + SQD_B]
W = network.add_constant((1, hidden_size, 2), W_out)
dense = network.add_fully_connected(input_tensor, 2, W_out, B_out)
OUT = network.add_shuffle(dense.get_output(0))
OUT.second_transpose = (1, 0, 2, 3, 4)
set_output_name(OUT, prefix, "squad_logits")
return OUT
def emb_layernorm(builder, network, config, weights_dict, builder_config, sequence_lengths, batch_sizes):
# int8 only support some of the sequence length, we dynamic on sequence length is not allowed.
input_ids = network.add_input(name="input_ids", dtype=trt.int32, shape=(-1 if len(batch_sizes) > 1 else batch_sizes[0], -1 if len(sequence_lengths) > 1 else sequence_lengths[0]))
segment_ids = network.add_input(name="segment_ids", dtype=trt.int32, shape=(-1 if len(batch_sizes) > 1 else batch_sizes[0], -1 if len(sequence_lengths) > 1 else sequence_lengths[0]))
input_mask = network.add_input(name="input_mask", dtype=trt.int32, shape=(-1 if len(batch_sizes) > 1 else batch_sizes[0], -1 if len(sequence_lengths) > 1 else sequence_lengths[0]))
# Specify profiles for the batch sizes we're interested in.
# Make sure the profile also works for all sizes not covered by the previous profile.
if len(sequence_lengths) > 1 or len(batch_sizes) > 1:
for batch_size in sorted(batch_sizes):
if len(sequence_lengths) == 1:
profile = builder.create_optimization_profile()
min_shape = (1, sequence_lengths[0])
shape = (batch_size, sequence_lengths[0])
profile.set_shape("input_ids", min=min_shape, opt=shape, max=shape)
profile.set_shape("segment_ids", min=min_shape, opt=shape, max=shape)
profile.set_shape("input_mask", min=min_shape, opt=shape, max=shape)
builder_config.add_optimization_profile(profile)
else:
for sequence_length in sorted(sequence_lengths):
profile = builder.create_optimization_profile()
min_shape = (1, sequence_length)
shape = (batch_size, sequence_length)
profile.set_shape("input_ids", min=min_shape, opt=shape, max=shape)
profile.set_shape("segment_ids", min=min_shape, opt=shape, max=shape)
profile.set_shape("input_mask", min=min_shape, opt=shape, max=shape)
builder_config.add_optimization_profile(profile)
wbeta = trt.PluginField("bert_embeddings_layernorm_beta", weights_dict["bert_embeddings_layernorm_beta"].numpy(), trt.PluginFieldType.FLOAT32)
wgamma = trt.PluginField("bert_embeddings_layernorm_gamma", weights_dict["bert_embeddings_layernorm_gamma"].numpy(), trt.PluginFieldType.FLOAT32)
wwordemb = trt.PluginField("bert_embeddings_word_embeddings", weights_dict["bert_embeddings_word_embeddings"].numpy(), trt.PluginFieldType.FLOAT32)
wtokemb = trt.PluginField("bert_embeddings_token_type_embeddings", weights_dict["bert_embeddings_token_type_embeddings"].numpy(), trt.PluginFieldType.FLOAT32)
wposemb = trt.PluginField("bert_embeddings_position_embeddings", weights_dict["bert_embeddings_position_embeddings"].numpy(), trt.PluginFieldType.FLOAT32)
output_fp16 = trt.PluginField("output_fp16", np.array([1 if config.use_fp16 else 0]).astype(np.int32), trt.PluginFieldType.INT32)
mha_type = trt.PluginField("mha_type_id", np.array([get_mha_dtype(config)], np.int32), trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection([wbeta, wgamma, wwordemb, wtokemb, wposemb, output_fp16, mha_type])
fn = emln_plg_creator.create_plugin("embeddings", pfc)
input_ids = network.add_shuffle(input_ids)
input_ids.second_transpose = (1, 0)
segment_ids = network.add_shuffle(segment_ids)
segment_ids.second_transpose = (1, 0)
input_mask = network.add_shuffle(input_mask)
input_mask.second_transpose = (1, 0)
inputs = [input_ids.get_output(0),
segment_ids.get_output(0),
input_mask.get_output(0)]
emb_layer = network.add_plugin_v2(inputs, fn)
if config.use_qat:
set_output_range(emb_layer, 1, 1)
set_output_name(emb_layer, "embeddings_", "output")
return emb_layer
def build_engine(batch_sizes, workspace_size, sequence_lengths, config, weights_dict, squad_json, vocab_file, calibrationCacheFile, calib_num, verbose):
explicit_batch_flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(explicit_batch_flag) as network, builder.create_builder_config() as builder_config:
builder_config.max_workspace_size = workspace_size * (1024 * 1024)
builder_config.avg_timing_iterations = 8
if config.use_fp16:
builder_config.set_flag(trt.BuilderFlag.FP16)
if config.use_int8:
builder_config.set_flag(trt.BuilderFlag.INT8)
if not config.use_qat:
calibrator = BertCalibrator(squad_json, vocab_file, calibrationCacheFile, 1, sequence_lengths[-1], calib_num)
builder_config.set_quantization_flag(trt.QuantizationFlag.CALIBRATE_BEFORE_FUSION)
builder_config.int8_calibrator = calibrator
if config.use_strict:
builder_config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if verbose:
builder_config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
if config.use_sparsity:
TRT_LOGGER.log(TRT_LOGGER.INFO, "Setting sparsity flag on builder_config.")
builder_config.set_flag(trt.BuilderFlag.SPARSE_WEIGHTS)
# speed up the engine build for trt major version >= 8
# 1. disable cudnn tactic
# 2. load global timing cache
if trt_version[0] >= 8:
tactic_source = builder_config.get_tactic_sources() & ~(1 << int(trt.TacticSource.CUDNN))
builder_config.set_tactic_sources(tactic_source)
if config.timing_cache != None:
if os.path.exists(config.timing_cache):
with open(config.timing_cache, "rb") as f:
cache = builder_config.create_timing_cache(f.read())
builder_config.set_timing_cache(cache, ignore_mismatch = False)
else:
cache = builder_config.create_timing_cache(b"")
builder_config.set_timing_cache(cache, ignore_mismatch = False)
# only use the largest sequence when in calibration mode
if config.is_calib_mode:
sequence_lengths = sequence_lengths[-1:]
# Create the network
emb_layer = emb_layernorm(builder, network, config, weights_dict, builder_config, sequence_lengths, batch_sizes)
embeddings = emb_layer.get_output(0)
mask_idx = emb_layer.get_output(1)
bert_out = bert_model(config, weights_dict, network, embeddings, mask_idx)
squad_logits = squad_output("cls_", config, weights_dict, network, bert_out)
squad_logits_out = squad_logits.get_output(0)
network.mark_output(squad_logits_out)
build_start_time = time.time()
engine = builder.build_engine(network, builder_config)
build_time_elapsed = (time.time() - build_start_time)
TRT_LOGGER.log(TRT_LOGGER.INFO, "build engine in {:.3f} Sec".format(build_time_elapsed))
# save global timing cache
if trt_version[0] >= 8 and config.timing_cache != None:
cache = builder_config.get_timing_cache()
with cache.serialize() as buffer:
with open(config.timing_cache, "wb") as f:
f.write(buffer)
f.flush()
os.fsync(f)
if config.use_int8 and not config.use_qat:
calibrator.free()
return engine
def generate_calibration_cache(sequence_lengths, workspace_size, config, weights_dict, squad_json, vocab_file, calibrationCacheFile, calib_num):
"""
BERT demo needs a separate engine building path to generate calibration cache.
This is because we need to configure SLN and MHA plugins in FP32 mode when
generating calibration cache, and INT8 mode when building the actual engine.
This cache could be generated by examining certain training data and can be
reused across different configurations.
"""
# dynamic shape not working with calibration, so we need generate a calibration cache first using fulldims network
if not config.use_int8 or os.path.exists(calibrationCacheFile):
return calibrationCacheFile
# generate calibration cache
saved_use_fp16 = config.use_fp16
config.use_fp16 = False
config.is_calib_mode = True
with build_engine([1], workspace_size, sequence_lengths, config, weights_dict, squad_json, vocab_file, calibrationCacheFile, calib_num, False) as engine:
TRT_LOGGER.log(TRT_LOGGER.INFO, "calibration cache generated in {:}".format(calibrationCacheFile))
config.use_fp16 = saved_use_fp16
config.is_calib_mode = False
def main():
parser = argparse.ArgumentParser(description="TensorRT BERT Sample", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-m", "--ckpt", required=False,
help="The checkpoint file basename, e.g.: basename(model.ckpt-766908.data-00000-of-00001) is model.ckpt-766908")
parser.add_argument("-x", "--onnx", required=False, help="The ONNX model file path.")
parser.add_argument("-pt", "--pytorch", required=False, help="The PyTorch checkpoint file path.")
parser.add_argument("-o", "--output", required=True, default="bert_base_384.engine", help="The bert engine file, ex bert.engine")
parser.add_argument("-b", "--batch-size", default=[], action="append", help="Batch size(s) to optimize for. The engine will be usable with any batch size below this, but may not be optimal for smaller sizes. Can be specified multiple times to optimize for more than one batch size.", type=int)
parser.add_argument("-s", "--sequence-length", default=[], action="append", help="Sequence length of the BERT model", type=int)
parser.add_argument("-c", "--config-dir", required=True,
help="The folder containing the bert_config.json, which can be downloaded e.g. from https://github.com/google-research/bert#pre-trained-models or by running download_models.py in dle/TensorFlow/LanguageModeling/BERT/data/pretrained_models_google")
parser.add_argument("-f", "--fp16", action="store_true", help="Indicates that inference should be run in FP16 precision", required=False)
parser.add_argument("-i", "--int8", action="store_true", help="Indicates that inference should be run in INT8 precision", required=False)
parser.add_argument("-t", "--strict", action="store_true", help="Indicates that inference should be run in strict precision mode", required=False)
parser.add_argument("-w", "--workspace-size", default=1200, help="Workspace size in MiB for building the BERT engine", type=int)
parser.add_argument("-j", "--squad-json", default="squad/dev-v1.1.json", help="squad json dataset used for int8 calibration", required=False)
parser.add_argument("-v", "--vocab-file", default="./pre-trained_model/uncased_L-24_H-1024_A-16/vocab.txt", help="Path to file containing entire understandable vocab", required=False)
parser.add_argument("-n", "--calib-num", default=100, help="calibration batch numbers", type=int)
parser.add_argument("-p", "--calib-path", help="calibration cache path", required=False)
parser.add_argument("-g", "--force-fc2-gemm", action="store_true", help="Force use gemm to implement FC2 layer", required=False)
parser.add_argument("-iln", "--force-int8-skipln", action="store_true", help="Run skip layernorm with INT8 (FP32 or FP16 by default) inputs and output", required=False)
parser.add_argument("-imh", "--force-int8-multihead", action="store_true", help="Run multi-head attention with INT8 (FP32 or FP16 by default) input and output", required=False)
parser.add_argument("-sp", "--sparse", action="store_true", help="Indicates that model is sparse", required=False)
parser.add_argument("-tcf", "--timing-cache-file", help="Path to tensorrt build timeing cache file, only available for tensorrt 8.0 and later", required=False)
parser.add_argument("--verbose", action="store_true", help="Turn on verbose logger and set profiling verbosity to DETAILED", required=False)
args, _ = parser.parse_known_args()
args.batch_size = args.batch_size or [1]
args.sequence_length = args.sequence_length or [128]
cc = pycuda.autoinit.device.compute_capability()
if cc[0] * 10 + cc[1] < 75 and args.force_int8_multihead:
raise RuntimeError("--force-int8-multihead option is only supported on Turing+ GPU.")
if cc[0] * 10 + cc[1] < 72 and args.force_int8_skipln:
raise RuntimeError("--force-int8-skipln option is only supported on Xavier+ GPU.")
if args.verbose:
TRT_LOGGER.min_severity = TRT_LOGGER.VERBOSE
bert_config_path = os.path.join(args.config_dir, "bert_config.json")
TRT_LOGGER.log(TRT_LOGGER.INFO, "Using configuration file: {:}".format(bert_config_path))
config = BertConfig(bert_config_path, args.fp16, args.int8, args.strict, args.force_fc2_gemm, args.force_int8_skipln, args.force_int8_multihead, args.int8 and args.onnx != None, args.sparse, args.timing_cache_file)
if args.calib_path != None:
calib_cache = args.calib_path
else:
calib_cache = "BertSquadL{}H{}A{}S{}CalibCache".format(config.num_hidden_layers, config.head_size, config.num_attention_heads, "-".join(str(len) for len in args.sequence_length))
if args.onnx != None:
weights_dict = load_onnx_weights_and_quant(args.onnx, config)
elif args.pytorch != None:
weights_dict = load_pytorch_weights_and_quant(args.pytorch, config)
elif args.ckpt != None:
weights_dict = load_tf_weights(args.ckpt, config)
generate_calibration_cache(args.sequence_length, args.workspace_size, config, weights_dict, args.squad_json, args.vocab_file, calib_cache, args.calib_num)
else:
raise RuntimeError("You need either specify TF checkpoint using option --ckpt or ONNX using option --onnx to build TRT BERT model.")
with build_engine(args.batch_size, args.workspace_size, args.sequence_length, config, weights_dict, args.squad_json, args.vocab_file, calib_cache, args.calib_num, args.verbose) as engine:
TRT_LOGGER.log(TRT_LOGGER.VERBOSE, "Serializing Engine...")
serialized_engine = engine.serialize()
TRT_LOGGER.log(TRT_LOGGER.INFO, "Saving Engine to {:}".format(args.output))
with open(args.output, "wb") as fout:
fout.write(serialized_engine)
TRT_LOGGER.log(TRT_LOGGER.INFO, "Done.")
if __name__ == "__main__":
main()