+
{% endblock %}
diff --git a/freezing/web/templates/user/rides.html b/freezing/web/templates/user/rides.html
index 551e46c..4caa4e4 100644
--- a/freezing/web/templates/user/rides.html
+++ b/freezing/web/templates/user/rides.html
@@ -51,11 +51,16 @@
tick: {
format: "%m/%d",
}
+ },
+ y: {
+ tick: {
+ format: d => d.toLocaleString()
+ }
}
},
tooltip: {
format: {
- value: (value) => Math.round(value),
+ value: (value) => Math.round(value).toLocaleString(),
}
},
legend: {
@@ -88,11 +93,16 @@
tick: {
format: d => "Week " + d,
}
+ },
+ y: {
+ tick: {
+ format: d => d.toLocaleString()
+ }
}
},
tooltip: {
format: {
- value: (value) => Math.round(value),
+ value: (value) => Math.round(value).toLocaleString(),
}
},
legend: {
diff --git a/freezing/web/utils/gviz_api.py b/freezing/web/utils/gviz_api.py
deleted file mode 100755
index 712dbc1..0000000
--- a/freezing/web/utils/gviz_api.py
+++ /dev/null
@@ -1,1185 +0,0 @@
-#!/usr/bin/python
-#
-# Copyright (C) 2009 Google Inc.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""Converts Python data into data for Google Visualization API clients.
-
-This library can be used to create a google.visualization.DataTable usable by
-visualizations built on the Google Visualization API. Output formats are raw
-JSON, JSON response, JavaScript, CSV, and HTML table.
-
-See http://code.google.com/apis/visualization/ for documentation on the
-Google Visualization API.
-"""
-
-__author__ = "Amit Weinstein, Misha Seltzer, Jacob Baskin"
-
-import cgi
-import csv
-import datetime
-from io import StringIO
-
-try:
- import json
-except ImportError:
- import simplejson as json
-
-import types
-from decimal import Decimal
-
-
-class DataTableException(Exception):
- """The general exception object thrown by DataTable."""
-
- pass
-
-
-class DataTableJSONEncoder(json.JSONEncoder):
- """JSON encoder that handles date/time/datetime objects correctly."""
-
- # def __init__(self, *args, **kwargs):
- # json.JSONEncoder.__init__(self,
- # separators=(",", ":"),
- # ensure_ascii=False)
-
- def default(self, o):
- if isinstance(o, datetime.datetime):
- if o.microsecond == 0:
- # If the time doesn't have ms-resolution, leave it out to keep
- # things smaller.
- return "Date(%d,%d,%d,%d,%d,%d)" % (
- o.year,
- o.month - 1,
- o.day,
- o.hour,
- o.minute,
- o.second,
- )
- else:
- return "Date(%d,%d,%d,%d,%d,%d,%d)" % (
- o.year,
- o.month - 1,
- o.day,
- o.hour,
- o.minute,
- o.second,
- o.microsecond / 1000,
- )
- elif isinstance(o, datetime.date):
- return "Date(%d,%d,%d)" % (o.year, o.month - 1, o.day)
- elif isinstance(o, datetime.time):
- return [o.hour, o.minute, o.second]
- elif isinstance(o, Decimal):
- return float(o)
- else:
- return super(DataTableJSONEncoder, self).default(o)
-
-
-class DataTable(object):
- """Wraps the data to convert to a Google Visualization API DataTable.
-
- Create this object, populate it with data, then call one of the ToJS...
- methods to return a string representation of the data in the format described.
-
- You can clear all data from the object to reuse it, but you cannot clear
- individual cells, rows, or columns. You also cannot modify the table schema
- specified in the class constructor.
-
- You can add new data one or more rows at a time. All data added to an
- instantiated DataTable must conform to the schema passed in to __init__().
-
- You can reorder the columns in the output table, and also specify row sorting
- order by column. The default column order is according to the original
- table_description parameter. Default row sort order is ascending, by column
- 1 values. For a dictionary, we sort the keys for order.
-
- The data and the table_description are closely tied, as described here:
-
- The table schema is defined in the class constructor's table_description
- parameter. The user defines each column using a tuple of
- (id[, type[, label[, custom_properties]]]). The default value for type is
- string, label is the same as ID if not specified, and custom properties is
- an empty dictionary if not specified.
-
- table_description is a dictionary or list, containing one or more column
- descriptor tuples, nested dictionaries, and lists. Each dictionary key, list
- element, or dictionary element must eventually be defined as
- a column description tuple. Here's an example of a dictionary where the key
- is a tuple, and the value is a list of two tuples:
- {('a', 'number'): [('b', 'number'), ('c', 'string')]}
-
- This flexibility in data entry enables you to build and manipulate your data
- in a Python structure that makes sense for your program.
-
- Add data to the table using the same nested design as the table's
- table_description, replacing column descriptor tuples with cell data, and
- each row is an element in the top level collection. This will be a bit
- clearer after you look at the following examples showing the
- table_description, matching data, and the resulting table:
-
- Columns as list of tuples [col1, col2, col3]
- table_description: [('a', 'number'), ('b', 'string')]
- AppendData( [[1, 'z'], [2, 'w'], [4, 'o'], [5, 'k']] )
- Table:
- a b <--- these are column ids/labels
- 1 z
- 2 w
- 4 o
- 5 k
-
- Dictionary of columns, where key is a column, and value is a list of
- columns {col1: [col2, col3]}
- table_description: {('a', 'number'): [('b', 'number'), ('c', 'string')]}
- AppendData( data: {1: [2, 'z'], 3: [4, 'w']}
- Table:
- a b c
- 1 2 z
- 3 4 w
-
- Dictionary where key is a column, and the value is itself a dictionary of
- columns {col1: {col2, col3}}
- table_description: {('a', 'number'): {'b': 'number', 'c': 'string'}}
- AppendData( data: {1: {'b': 2, 'c': 'z'}, 3: {'b': 4, 'c': 'w'}}
- Table:
- a b c
- 1 2 z
- 3 4 w
- """
-
- def __init__(self, table_description, data=None, custom_properties=None):
- """Initialize the data table from a table schema and (optionally) data.
-
- See the class documentation for more information on table schema and data
- values.
-
- Args:
- table_description: A table schema, following one of the formats described
- in TableDescriptionParser(). Schemas describe the
- column names, data types, and labels. See
- TableDescriptionParser() for acceptable formats.
- data: Optional. If given, fills the table with the given data. The data
- structure must be consistent with schema in table_description. See
- the class documentation for more information on acceptable data. You
- can add data later by calling AppendData().
- custom_properties: Optional. A dictionary from string to string that
- goes into the table's custom properties. This can be
- later changed by changing self.custom_properties.
-
- Raises:
- DataTableException: Raised if the data and the description did not match,
- or did not use the supported formats.
- """
- self.__columns = self.TableDescriptionParser(table_description)
- self.__data = []
- self.custom_properties = {}
- if custom_properties is not None:
- self.custom_properties = custom_properties
- if data:
- self.LoadData(data)
-
- @staticmethod
- def CoerceValue(value, value_type):
- """Coerces a single value into the type expected for its column.
-
- Internal helper method.
-
- Args:
- value: The value which should be converted
- value_type: One of "string", "number", "boolean", "date", "datetime" or
- "timeofday".
-
- Returns:
- An item of the Python type appropriate to the given value_type. Strings
- are also converted to Unicode using UTF-8 encoding if necessary.
- If a tuple is given, it should be in one of the following forms:
- - (value, formatted value)
- - (value, formatted value, custom properties)
- where the formatted value is a string, and custom properties is a
- dictionary of the custom properties for this cell.
- To specify custom properties without specifying formatted value, one can
- pass None as the formatted value.
- One can also have a null-valued cell with formatted value and/or custom
- properties by specifying None for the value.
- This method ignores the custom properties except for checking that it is a
- dictionary. The custom properties are handled in the ToJSon and ToJSCode
- methods.
- The real type of the given value is not strictly checked. For example,
- any type can be used for string - as we simply take its str( ) and for
- boolean value we just check "if value".
- Examples:
- CoerceValue(None, "string") returns None
- CoerceValue((5, "5$"), "number") returns (5, "5$")
- CoerceValue(100, "string") returns "100"
- CoerceValue(0, "boolean") returns False
-
- Raises:
- DataTableException: The value and type did not match in a not-recoverable
- way, for example given value 'abc' for type 'number'.
- """
- if isinstance(value, tuple):
- # In case of a tuple, we run the same function on the value itself and
- # add the formatted value.
- if len(value) not in [2, 3] or (
- len(value) == 3 and not isinstance(value[2], dict)
- ):
- raise DataTableException(
- "Wrong format for value and formatting - %s." % str(value)
- )
- if not isinstance(value[1], types.StringTypes + (types.NoneType,)):
- raise DataTableException(
- "Formatted value is not string, given %s." % type(value[1])
- )
- js_value = DataTable.CoerceValue(value[0], value_type)
- return (js_value,) + value[1:]
-
- t_value = type(value)
- if value is None:
- return value
- if value_type == "boolean":
- return bool(value)
-
- elif value_type == "number":
- if isinstance(value, (int, float)):
- return value
- raise DataTableException("Wrong type %s when expected number" % t_value)
-
- elif value_type == "string":
- if isinstance(value, str):
- return value
- else:
- return bytes(value).decode("utf-8")
-
- elif value_type == "date":
- if isinstance(value, datetime.datetime):
- return datetime.date(value.year, value.month, value.day)
- elif isinstance(value, datetime.date):
- return value
- else:
- raise DataTableException("Wrong type %s when expected date" % t_value)
-
- elif value_type == "timeofday":
- if isinstance(value, datetime.datetime):
- return datetime.time(value.hour, value.minute, value.second)
- elif isinstance(value, datetime.time):
- return value
- else:
- raise DataTableException("Wrong type %s when expected time" % t_value)
-
- elif value_type == "datetime":
- if isinstance(value, datetime.datetime):
- return value
- else:
- raise DataTableException(
- "Wrong type %s when expected datetime" % t_value
- )
- # If we got here, it means the given value_type was not one of the
- # supported types.
- raise DataTableException("Unsupported type %s" % value_type)
-
- @staticmethod
- def EscapeForJSCode(encoder, value):
- if value is None:
- return "null"
- elif isinstance(value, datetime.datetime):
- if value.microsecond == 0:
- # If it's not ms-resolution, leave that out to save space.
- return "new Date(%d,%d,%d,%d,%d,%d)" % (
- value.year,
- value.month - 1, # To match JS
- value.day,
- value.hour,
- value.minute,
- value.second,
- )
- else:
- return "new Date(%d,%d,%d,%d,%d,%d,%d)" % (
- value.year,
- value.month - 1, # match JS
- value.day,
- value.hour,
- value.minute,
- value.second,
- value.microsecond / 1000,
- )
- elif isinstance(value, datetime.date):
- return "new Date(%d,%d,%d)" % (value.year, value.month - 1, value.day)
- else:
- return encoder.encode(value)
-
- @staticmethod
- def ToString(value):
- if value is None:
- return "(empty)"
- elif isinstance(value, (datetime.datetime, datetime.date, datetime.time)):
- return str(value)
- elif isinstance(value, str):
- return value
- elif isinstance(value, bool):
- return str(value).lower()
- else:
- return bytes(value).decode("utf-8")
-
- @staticmethod
- def ColumnTypeParser(description):
- """Parses a single column description. Internal helper method.
-
- Args:
- description: a column description in the possible formats:
- 'id'
- ('id',)
- ('id', 'type')
- ('id', 'type', 'label')
- ('id', 'type', 'label', {'custom_prop1': 'custom_val1'})
- Returns:
- Dictionary with the following keys: id, label, type, and
- custom_properties where:
- - If label not given, it equals the id.
- - If type not given, string is used by default.
- - If custom properties are not given, an empty dictionary is used by
- default.
-
- Raises:
- DataTableException: The column description did not match the RE, or
- unsupported type was passed.
- """
- if not description:
- raise DataTableException("Description error: empty description given")
-
- if not isinstance(description, (types.StringTypes, tuple)):
- raise DataTableException(
- "Description error: expected either string or "
- "tuple, got %s." % type(description)
- )
-
- if isinstance(description, types.StringTypes):
- description = (description,)
-
- # According to the tuple's length, we fill the keys
- # We verify everything is of type string
- for elem in description[:3]:
- if not isinstance(elem, types.StringTypes):
- raise DataTableException(
- "Description error: expected tuple of "
- "strings, current element of type %s." % type(elem)
- )
- desc_dict = {
- "id": description[0],
- "label": description[0],
- "type": "string",
- "custom_properties": {},
- }
- if len(description) > 1:
- desc_dict["type"] = description[1].lower()
- if len(description) > 2:
- desc_dict["label"] = description[2]
- if len(description) > 3:
- if not isinstance(description[3], dict):
- raise DataTableException(
- "Description error: expected custom "
- "properties of type dict, current element "
- "of type %s." % type(description[3])
- )
- desc_dict["custom_properties"] = description[3]
- if len(description) > 4:
- raise DataTableException(
- "Description error: tuple of length > 4"
- )
- if desc_dict["type"] not in [
- "string",
- "number",
- "boolean",
- "date",
- "datetime",
- "timeofday",
- ]:
- raise DataTableException(
- "Description error: unsupported type '%s'" % desc_dict["type"]
- )
- return desc_dict
-
- @staticmethod
- def TableDescriptionParser(table_description, depth=0):
- """Parses the table_description object for internal use.
-
- Parses the user-submitted table description into an internal format used
- by the Python DataTable class. Returns the flat list of parsed columns.
-
- Args:
- table_description: A description of the table which should comply
- with one of the formats described below.
- depth: Optional. The depth of the first level in the current description.
- Used by recursive calls to this function.
-
- Returns:
- List of columns, where each column represented by a dictionary with the
- keys: id, label, type, depth, container which means the following:
- - id: the id of the column
- - name: The name of the column
- - type: The datatype of the elements in this column. Allowed types are
- described in ColumnTypeParser().
- - depth: The depth of this column in the table description
- - container: 'dict', 'iter' or 'scalar' for parsing the format easily.
- - custom_properties: The custom properties for this column.
- The returned description is flattened regardless of how it was given.
-
- Raises:
- DataTableException: Error in a column description or in the description
- structure.
-
- Examples:
- A column description can be of the following forms:
- 'id'
- ('id',)
- ('id', 'type')
- ('id', 'type', 'label')
- ('id', 'type', 'label', {'custom_prop1': 'custom_val1'})
- or as a dictionary:
- 'id': 'type'
- 'id': ('type',)
- 'id': ('type', 'label')
- 'id': ('type', 'label', {'custom_prop1': 'custom_val1'})
- If the type is not specified, we treat it as string.
- If no specific label is given, the label is simply the id.
- If no custom properties are given, we use an empty dictionary.
-
- input: [('a', 'date'), ('b', 'timeofday', 'b', {'foo': 'bar'})]
- output: [{'id': 'a', 'label': 'a', 'type': 'date',
- 'depth': 0, 'container': 'iter', 'custom_properties': {}},
- {'id': 'b', 'label': 'b', 'type': 'timeofday',
- 'depth': 0, 'container': 'iter',
- 'custom_properties': {'foo': 'bar'}}]
-
- input: {'a': [('b', 'number'), ('c', 'string', 'column c')]}
- output: [{'id': 'a', 'label': 'a', 'type': 'string',
- 'depth': 0, 'container': 'dict', 'custom_properties': {}},
- {'id': 'b', 'label': 'b', 'type': 'number',
- 'depth': 1, 'container': 'iter', 'custom_properties': {}},
- {'id': 'c', 'label': 'column c', 'type': 'string',
- 'depth': 1, 'container': 'iter', 'custom_properties': {}}]
-
- input: {('a', 'number', 'column a'): { 'b': 'number', 'c': 'string'}}
- output: [{'id': 'a', 'label': 'column a', 'type': 'number',
- 'depth': 0, 'container': 'dict', 'custom_properties': {}},
- {'id': 'b', 'label': 'b', 'type': 'number',
- 'depth': 1, 'container': 'dict', 'custom_properties': {}},
- {'id': 'c', 'label': 'c', 'type': 'string',
- 'depth': 1, 'container': 'dict', 'custom_properties': {}}]
-
- input: { ('w', 'string', 'word'): ('c', 'number', 'count') }
- output: [{'id': 'w', 'label': 'word', 'type': 'string',
- 'depth': 0, 'container': 'dict', 'custom_properties': {}},
- {'id': 'c', 'label': 'count', 'type': 'number',
- 'depth': 1, 'container': 'scalar', 'custom_properties': {}}]
-
- input: {'a': ('number', 'column a'), 'b': ('string', 'column b')}
- output: [{'id': 'a', 'label': 'column a', 'type': 'number', 'depth': 0,
- 'container': 'dict', 'custom_properties': {}},
- {'id': 'b', 'label': 'column b', 'type': 'string', 'depth': 0,
- 'container': 'dict', 'custom_properties': {}}
-
- NOTE: there might be ambiguity in the case of a dictionary representation
- of a single column. For example, the following description can be parsed
- in 2 different ways: {'a': ('b', 'c')} can be thought of a single column
- with the id 'a', of type 'b' and the label 'c', or as 2 columns: one named
- 'a', and the other named 'b' of type 'c'. We choose the first option by
- default, and in case the second option is the right one, it is possible to
- make the key into a tuple (i.e. {('a',): ('b', 'c')}) or add more info
- into the tuple, thus making it look like this: {'a': ('b', 'c', 'b', {})}
- -- second 'b' is the label, and {} is the custom properties field.
- """
- # For the recursion step, we check for a scalar object (string or tuple)
- if isinstance(table_description, (types.StringTypes, tuple)):
- parsed_col = DataTable.ColumnTypeParser(table_description)
- parsed_col["depth"] = depth
- parsed_col["container"] = "scalar"
- return [parsed_col]
-
- # Since it is not scalar, table_description must be iterable.
- if not hasattr(table_description, "__iter__"):
- raise DataTableException(
- "Expected an iterable object, got %s" % type(table_description)
- )
- if not isinstance(table_description, dict):
- # We expects a non-dictionary iterable item.
- columns = []
- for desc in table_description:
- parsed_col = DataTable.ColumnTypeParser(desc)
- parsed_col["depth"] = depth
- parsed_col["container"] = "iter"
- columns.append(parsed_col)
- if not columns:
- raise DataTableException(
- "Description iterable objects should not" " be empty."
- )
- return columns
- # The other case is a dictionary
- if not table_description:
- raise DataTableException(
- "Empty dictionaries are not allowed inside" " description"
- )
-
- # To differentiate between the two cases of more levels below or this is
- # the most inner dictionary, we consider the number of keys (more then one
- # key is indication for most inner dictionary) and the type of the key and
- # value in case of only 1 key (if the type of key is string and the type of
- # the value is a tuple of 0-3 items, we assume this is the most inner
- # dictionary).
- # NOTE: this way of differentiating might create ambiguity. See docs.
- if len(table_description) != 1 or (
- isinstance(table_description.keys()[0], types.StringTypes)
- and isinstance(table_description.values()[0], tuple)
- and len(table_description.values()[0]) < 4
- ):
- # This is the most inner dictionary. Parsing types.
- columns = []
- # We sort the items, equivalent to sort the keys since they are unique
- for key, value in sorted(table_description.items()):
- # We parse the column type as (key, type) or (key, type, label) using
- # ColumnTypeParser.
- if isinstance(value, tuple):
- parsed_col = DataTable.ColumnTypeParser((key,) + value)
- else:
- parsed_col = DataTable.ColumnTypeParser((key, value))
- parsed_col["depth"] = depth
- parsed_col["container"] = "dict"
- columns.append(parsed_col)
- return columns
- # This is an outer dictionary, must have at most one key.
- parsed_col = DataTable.ColumnTypeParser(table_description.keys()[0])
- parsed_col["depth"] = depth
- parsed_col["container"] = "dict"
- return [parsed_col] + DataTable.TableDescriptionParser(
- table_description.values()[0], depth=depth + 1
- )
-
- @property
- def columns(self):
- """Returns the parsed table description."""
- return self.__columns
-
- def NumberOfRows(self):
- """Returns the number of rows in the current data stored in the table."""
- return len(self.__data)
-
- def SetRowsCustomProperties(self, rows, custom_properties):
- """Sets the custom properties for given row(s).
-
- Can accept a single row or an iterable of rows.
- Sets the given custom properties for all specified rows.
-
- Args:
- rows: The row, or rows, to set the custom properties for.
- custom_properties: A string to string dictionary of custom properties to
- set for all rows.
- """
- if not hasattr(rows, "__iter__"):
- rows = [rows]
- for row in rows:
- self.__data[row] = (self.__data[row][0], custom_properties)
-
- def LoadData(self, data, custom_properties=None):
- """Loads new rows to the data table, clearing existing rows.
-
- May also set the custom_properties for the added rows. The given custom
- properties dictionary specifies the dictionary that will be used for *all*
- given rows.
-
- Args:
- data: The rows that the table will contain.
- custom_properties: A dictionary of string to string to set as the custom
- properties for all rows.
- """
- self.__data = []
- self.AppendData(data, custom_properties)
-
- def AppendData(self, data, custom_properties=None):
- """Appends new data to the table.
-
- Data is appended in rows. Data must comply with
- the table schema passed in to __init__(). See CoerceValue() for a list
- of acceptable data types. See the class documentation for more information
- and examples of schema and data values.
-
- Args:
- data: The row to add to the table. The data must conform to the table
- description format.
- custom_properties: A dictionary of string to string, representing the
- custom properties to add to all the rows.
-
- Raises:
- DataTableException: The data structure does not match the description.
- """
- # If the maximal depth is 0, we simply iterate over the data table
- # lines and insert them using _InnerAppendData. Otherwise, we simply
- # let the _InnerAppendData handle all the levels.
- if not self.__columns[-1]["depth"]:
- for row in data:
- self._InnerAppendData(({}, custom_properties), row, 0)
- else:
- self._InnerAppendData(({}, custom_properties), data, 0)
-
- def _InnerAppendData(self, prev_col_values, data, col_index):
- """Inner function to assist LoadData."""
- # We first check that col_index has not exceeded the columns size
- if col_index >= len(self.__columns):
- raise DataTableException("The data does not match description, too deep")
-
- # Dealing with the scalar case, the data is the last value.
- if self.__columns[col_index]["container"] == "scalar":
- prev_col_values[0][self.__columns[col_index]["id"]] = data
- self.__data.append(prev_col_values)
- return
-
- if self.__columns[col_index]["container"] == "iter":
- if not hasattr(data, "__iter__") or isinstance(data, dict):
- raise DataTableException(
- "Expected iterable object, got %s" % type(data)
- )
- # We only need to insert the rest of the columns
- # If there are less items than expected, we only add what there is.
- for value in data:
- if col_index >= len(self.__columns):
- raise DataTableException("Too many elements given in data")
- prev_col_values[0][self.__columns[col_index]["id"]] = value
- col_index += 1
- self.__data.append(prev_col_values)
- return
-
- # We know the current level is a dictionary, we verify the type.
- if not isinstance(data, dict):
- raise DataTableException(
- "Expected dictionary at current level, got %s" % type(data)
- )
- # We check if this is the last level
- if self.__columns[col_index]["depth"] == self.__columns[-1]["depth"]:
- # We need to add the keys in the dictionary as they are
- for col in self.__columns[col_index:]:
- if col["id"] in data:
- prev_col_values[0][col["id"]] = data[col["id"]]
- self.__data.append(prev_col_values)
- return
-
- # We have a dictionary in an inner depth level.
- if not data.keys():
- # In case this is an empty dictionary, we add a record with the columns
- # filled only until this point.
- self.__data.append(prev_col_values)
- else:
- for key in sorted(data):
- col_values = dict(prev_col_values[0])
- col_values[self.__columns[col_index]["id"]] = key
- self._InnerAppendData(
- (col_values, prev_col_values[1]), data[key], col_index + 1
- )
-
- def _PreparedData(self, order_by=()):
- """Prepares the data for enumeration - sorting it by order_by.
-
- Args:
- order_by: Optional. Specifies the name of the column(s) to sort by, and
- (optionally) which direction to sort in. Default sort direction
- is asc. Following formats are accepted:
- "string_col_name" -- For a single key in default (asc) order.
- ("string_col_name", "asc|desc") -- For a single key.
- [("col_1","asc|desc"), ("col_2","asc|desc")] -- For more than
- one column, an array of tuples of (col_name, "asc|desc").
-
- Returns:
- The data sorted by the keys given.
-
- Raises:
- DataTableException: Sort direction not in 'asc' or 'desc'
- """
- if not order_by:
- return self.__data
-
- proper_sort_keys = []
- if isinstance(order_by, types.StringTypes) or (
- isinstance(order_by, tuple)
- and len(order_by) == 2
- and order_by[1].lower() in ["asc", "desc"]
- ):
- order_by = (order_by,)
- for key in order_by:
- if isinstance(key, types.StringTypes):
- proper_sort_keys.append((key, 1))
- elif (
- isinstance(key, (list, tuple))
- and len(key) == 2
- and key[1].lower() in ("asc", "desc")
- ):
- proper_sort_keys.append((key[0], key[1].lower() == "asc" and 1 or -1))
- else:
- raise DataTableException(
- "Expected tuple with second value: " "'asc' or 'desc'"
- )
-
- # Thanks https://stackoverflow.com/a/22490617/424301
- def cmp(a, b):
- return (a > b) - (a < b)
-
- def SortCmpFunc(row1, row2):
- """cmp function for sorted. Compares by keys and 'asc'/'desc' keywords."""
- for key, asc_mult in proper_sort_keys:
- cmp_result = asc_mult * cmp(row1[0].get(key), row2[0].get(key))
- if cmp_result:
- return cmp_result
- return 0
-
- return sorted(self.__data, cmp=SortCmpFunc)
-
- def ToJSCode(self, name, columns_order=None, order_by=()):
- """Writes the data table as a JS code string.
-
- This method writes a string of JS code that can be run to
- generate a DataTable with the specified data. Typically used for debugging
- only.
-
- Args:
- name: The name of the table. The name would be used as the DataTable's
- variable name in the created JS code.
- columns_order: Optional. Specifies the order of columns in the
- output table. Specify a list of all column IDs in the order
- in which you want the table created.
- Note that you must list all column IDs in this parameter,
- if you use it.
- order_by: Optional. Specifies the name of the column(s) to sort by.
- Passed as is to _PreparedData.
-
- Returns:
- A string of JS code that, when run, generates a DataTable with the given
- name and the data stored in the DataTable object.
- Example result:
- "var tab1 = new google.visualization.DataTable();
- tab1.addColumn("string", "a", "a");
- tab1.addColumn("number", "b", "b");
- tab1.addColumn("boolean", "c", "c");
- tab1.addRows(10);
- tab1.setCell(0, 0, "a");
- tab1.setCell(0, 1, 1, null, {"foo": "bar"});
- tab1.setCell(0, 2, true);
- ...
- tab1.setCell(9, 0, "c");
- tab1.setCell(9, 1, 3, "3$");
- tab1.setCell(9, 2, false);"
-
- Raises:
- DataTableException: The data does not match the type.
- """
-
- encoder = DataTableJSONEncoder()
-
- if columns_order is None:
- columns_order = [col["id"] for col in self.__columns]
- col_dict = dict([(col["id"], col) for col in self.__columns])
-
- # We first create the table with the given name
- jscode = "var %s = new google.visualization.DataTable();\n" % name
- if self.custom_properties:
- jscode += "%s.setTableProperties(%s);\n" % (
- name,
- encoder.encode(self.custom_properties),
- )
-
- # We add the columns to the table
- for i, col in enumerate(columns_order):
- jscode += "%s.addColumn(%s, %s, %s);\n" % (
- name,
- encoder.encode(col_dict[col]["type"]),
- encoder.encode(col_dict[col]["label"]),
- encoder.encode(col_dict[col]["id"]),
- )
- if col_dict[col]["custom_properties"]:
- jscode += "%s.setColumnProperties(%d, %s);\n" % (
- name,
- i,
- encoder.encode(col_dict[col]["custom_properties"]),
- )
- jscode += "%s.addRows(%d);\n" % (name, len(self.__data))
-
- # We now go over the data and add each row
- for i, (row, cp) in enumerate(self._PreparedData(order_by)):
- # We add all the elements of this row by their order
- for j, col in enumerate(columns_order):
- if col not in row or row[col] is None:
- continue
- value = self.CoerceValue(row[col], col_dict[col]["type"])
- if isinstance(value, tuple):
- cell_cp = ""
- if len(value) == 3:
- cell_cp = ", %s" % encoder.encode(row[col][2])
- # We have a formatted value or custom property as well
- jscode += "%s.setCell(%d, %d, %s, %s%s);\n" % (
- name,
- i,
- j,
- self.EscapeForJSCode(encoder, value[0]),
- self.EscapeForJSCode(encoder, value[1]),
- cell_cp,
- )
- else:
- jscode += "%s.setCell(%d, %d, %s);\n" % (
- name,
- i,
- j,
- self.EscapeForJSCode(encoder, value),
- )
- if cp:
- jscode += "%s.setRowProperties(%d, %s);\n" % (
- name,
- i,
- encoder.encode(cp),
- )
- return jscode
-
- def ToHtml(self, columns_order=None, order_by=()):
- """Writes the data table as an HTML table code string.
-
- Args:
- columns_order: Optional. Specifies the order of columns in the
- output table. Specify a list of all column IDs in the order
- in which you want the table created.
- Note that you must list all column IDs in this parameter,
- if you use it.
- order_by: Optional. Specifies the name of the column(s) to sort by.
- Passed as is to _PreparedData.
-
- Returns:
- An HTML table code string.
- Example result (the result is without the newlines):
-
- a | b | c |
-
- 1 | "z" | 2 |
- "3$" | "w" | |
-
-
-
- Raises:
- DataTableException: The data does not match the type.
- """
- table_template = '
'
- columns_template = "
%s
"
- rows_template = "
%s"
- row_template = "
%s
"
- header_cell_template = "
%s | "
- cell_template = "
%s | "
-
- if columns_order is None:
- columns_order = [col["id"] for col in self.__columns]
- col_dict = dict([(col["id"], col) for col in self.__columns])
-
- columns_list = []
- for col in columns_order:
- columns_list.append(
- header_cell_template % cgi.escape(col_dict[col]["label"])
- )
- columns_html = columns_template % "".join(columns_list)
-
- rows_list = []
- # We now go over the data and add each row
- for row, unused_cp in self._PreparedData(order_by):
- cells_list = []
- # We add all the elements of this row by their order
- for col in columns_order:
- # For empty string we want empty quotes ("").
- value = ""
- if col in row and row[col] is not None:
- value = self.CoerceValue(row[col], col_dict[col]["type"])
- if isinstance(value, tuple):
- # We have a formatted value and we're going to use it
- cells_list.append(
- cell_template % cgi.escape(self.ToString(value[1]))
- )
- else:
- cells_list.append(cell_template % cgi.escape(self.ToString(value)))
- rows_list.append(row_template % "".join(cells_list))
- rows_html = rows_template % "".join(rows_list)
-
- return table_template % (columns_html + rows_html)
-
- def ToCsv(self, columns_order=None, order_by=(), separator=","):
- """Writes the data table as a CSV string.
-
- Output is encoded in UTF-8 because the Python "csv" module can't handle
- Unicode properly according to its documentation.
-
- Args:
- columns_order: Optional. Specifies the order of columns in the
- output table. Specify a list of all column IDs in the order
- in which you want the table created.
- Note that you must list all column IDs in this parameter,
- if you use it.
- order_by: Optional. Specifies the name of the column(s) to sort by.
- Passed as is to _PreparedData.
- separator: Optional. The separator to use between the values.
-
- Returns:
- A CSV string representing the table.
- Example result:
- 'a','b','c'
- 1,'z',2
- 3,'w',''
-
- Raises:
- DataTableException: The data does not match the type.
- """
-
- csv_buffer = StringIO.StringIO()
- writer = csv.writer(csv_buffer, delimiter=separator)
-
- if columns_order is None:
- columns_order = [col["id"] for col in self.__columns]
- col_dict = dict([(col["id"], col) for col in self.__columns])
-
- writer.writerow(
- [col_dict[col]["label"].encode("utf-8") for col in columns_order]
- )
-
- # We now go over the data and add each row
- for row, unused_cp in self._PreparedData(order_by):
- cells_list = []
- # We add all the elements of this row by their order
- for col in columns_order:
- value = ""
- if col in row and row[col] is not None:
- value = self.CoerceValue(row[col], col_dict[col]["type"])
- if isinstance(value, tuple):
- # We have a formatted value. Using it only for date/time types.
- if col_dict[col]["type"] in ["date", "datetime", "timeofday"]:
- cells_list.append(self.ToString(value[1]).encode("utf-8"))
- else:
- cells_list.append(self.ToString(value[0]).encode("utf-8"))
- else:
- cells_list.append(self.ToString(value).encode("utf-8"))
- writer.writerow(cells_list)
- return csv_buffer.getvalue()
-
- def ToTsvExcel(self, columns_order=None, order_by=()):
- """Returns a file in tab-separated-format readable by MS Excel.
-
- Returns a file in UTF-16 little endian encoding, with tabs separating the
- values.
-
- Args:
- columns_order: Delegated to ToCsv.
- order_by: Delegated to ToCsv.
-
- Returns:
- A tab-separated little endian UTF16 file representing the table.
- """
- return (
- self.ToCsv(columns_order, order_by, separator="\t")
- .decode("utf-8")
- .encode("UTF-16LE")
- )
-
- def _ToJSonObj(self, columns_order=None, order_by=()):
- """Returns an object suitable to be converted to JSON.
-
- Args:
- columns_order: Optional. A list of all column IDs in the order in which
- you want them created in the output table. If specified,
- all column IDs must be present.
- order_by: Optional. Specifies the name of the column(s) to sort by.
- Passed as is to _PreparedData().
-
- Returns:
- A dictionary object for use by ToJSon or ToJSonResponse.
- """
- if columns_order is None:
- columns_order = [col["id"] for col in self.__columns]
- col_dict = dict([(col["id"], col) for col in self.__columns])
-
- # Creating the column JSON objects
- col_objs = []
- for col_id in columns_order:
- col_obj = {
- "id": col_dict[col_id]["id"],
- "label": col_dict[col_id]["label"],
- "type": col_dict[col_id]["type"],
- }
- if col_dict[col_id]["custom_properties"]:
- col_obj["p"] = col_dict[col_id]["custom_properties"]
- col_objs.append(col_obj)
-
- # Creating the rows jsons
- row_objs = []
- for row, cp in self._PreparedData(order_by):
- cell_objs = []
- for col in columns_order:
- value = self.CoerceValue(row.get(col, None), col_dict[col]["type"])
- if value is None:
- cell_obj = None
- elif isinstance(value, tuple):
- cell_obj = {"v": value[0]}
- if len(value) > 1 and value[1] is not None:
- cell_obj["f"] = value[1]
- if len(value) == 3:
- cell_obj["p"] = value[2]
- else:
- cell_obj = {"v": value}
- cell_objs.append(cell_obj)
- row_obj = {"c": cell_objs}
- if cp:
- row_obj["p"] = cp
- row_objs.append(row_obj)
-
- json_obj = {"cols": col_objs, "rows": row_objs}
- if self.custom_properties:
- json_obj["p"] = self.custom_properties
-
- return json_obj
-
- def ToJSon(self, columns_order=None, order_by=()):
- """Returns a string that can be used in a JS DataTable constructor.
-
- This method writes a JSON string that can be passed directly into a Google
- Visualization API DataTable constructor. Use this output if you are
- hosting the visualization HTML on your site, and want to code the data
- table in Python. Pass this string into the
- google.visualization.DataTable constructor, e.g,:
- ... on my page that hosts my visualization ...
- google.setOnLoadCallback(drawTable);
- function drawTable() {
- var data = new google.visualization.DataTable(_my_JSon_string, 0.6);
- myTable.draw(data);
- }
-
- Args:
- columns_order: Optional. Specifies the order of columns in the
- output table. Specify a list of all column IDs in the order
- in which you want the table created.
- Note that you must list all column IDs in this parameter,
- if you use it.
- order_by: Optional. Specifies the name of the column(s) to sort by.
- Passed as is to _PreparedData().
-
- Returns:
- A JSon constructor string to generate a JS DataTable with the data
- stored in the DataTable object.
- Example result (the result is without the newlines):
- {cols: [{id:"a",label:"a",type:"number"},
- {id:"b",label:"b",type:"string"},
- {id:"c",label:"c",type:"number"}],
- rows: [{c:[{v:1},{v:"z"},{v:2}]}, c:{[{v:3,f:"3$"},{v:"w"},{v:null}]}],
- p: {'foo': 'bar'}}
-
- Raises:
- DataTableException: The data does not match the type.
- """
-
- encoder = DataTableJSONEncoder()
- return encoder.encode(self._ToJSonObj(columns_order, order_by)).encode("utf-8")
-
- def ToJSonResponse(
- self,
- columns_order=None,
- order_by=(),
- req_id=0,
- response_handler="google.visualization.Query.setResponse",
- ):
- """Writes a table as a JSON response that can be returned as-is to a client.
-
- This method writes a JSON response to return to a client in response to a
- Google Visualization API query. This string can be processed by the calling
- page, and is used to deliver a data table to a visualization hosted on
- a different page.
-
- Args:
- columns_order: Optional. Passed straight to self.ToJSon().
- order_by: Optional. Passed straight to self.ToJSon().
- req_id: Optional. The response id, as retrieved by the request.
- response_handler: Optional. The response handler, as retrieved by the
- request.
-
- Returns:
- A JSON response string to be received by JS the visualization Query
- object. This response would be translated into a DataTable on the
- client side.
- Example result (newlines added for readability):
- google.visualization.Query.setResponse({
- 'version':'0.6', 'reqId':'0', 'status':'OK',
- 'table': {cols: [...], rows: [...]}});
-
- Note: The URL returning this string can be used as a data source by Google
- Visualization Gadgets or from JS code.
- """
-
- response_obj = {
- "version": "0.6",
- "reqId": str(req_id),
- "table": self._ToJSonObj(columns_order, order_by),
- "status": "ok",
- }
- encoder = DataTableJSONEncoder()
- return "%s(%s);" % (
- response_handler,
- encoder.encode(response_obj).encode("utf-8"),
- )
-
- def ToResponse(self, columns_order=None, order_by=(), tqx=""):
- """Writes the right response according to the request string passed in tqx.
-
- This method parses the tqx request string (format of which is defined in
- the documentation for implementing a data source of Google Visualization),
- and returns the right response according to the request.
- It parses out the "out" parameter of tqx, calls the relevant response
- (ToJSonResponse() for "json", ToCsv() for "csv", ToHtml() for "html",
- ToTsvExcel() for "tsv-excel") and passes the response function the rest of
- the relevant request keys.
-
- Args:
- columns_order: Optional. Passed as is to the relevant response function.
- order_by: Optional. Passed as is to the relevant response function.
- tqx: Optional. The request string as received by HTTP GET. Should be in
- the format "key1:value1;key2:value2...". All keys have a default
- value, so an empty string will just do the default (which is calling
- ToJSonResponse() with no extra parameters).
-
- Returns:
- A response string, as returned by the relevant response function.
-
- Raises:
- DataTableException: One of the parameters passed in tqx is not supported.
- """
- tqx_dict = {}
- if tqx:
- tqx_dict = dict(opt.split(":") for opt in tqx.split(";"))
- if tqx_dict.get("version", "0.6") != "0.6":
- raise DataTableException(
- "Version (%s) passed by request is not supported." % tqx_dict["version"]
- )
-
- if tqx_dict.get("out", "json") == "json":
- response_handler = tqx_dict.get(
- "responseHandler", "google.visualization.Query.setResponse"
- )
- return self.ToJSonResponse(
- columns_order,
- order_by,
- req_id=tqx_dict.get("reqId", 0),
- response_handler=response_handler,
- )
- elif tqx_dict["out"] == "html":
- return self.ToHtml(columns_order, order_by)
- elif tqx_dict["out"] == "csv":
- return self.ToCsv(columns_order, order_by)
- elif tqx_dict["out"] == "tsv-excel":
- return self.ToTsvExcel(columns_order, order_by)
- else:
- raise DataTableException(
- "'out' parameter: '%s' is not supported" % tqx_dict["out"]
- )
diff --git a/freezing/web/views/chartdata.py b/freezing/web/views/chartdata.py
index 34be56e..bc984c1 100644
--- a/freezing/web/views/chartdata.py
+++ b/freezing/web/views/chartdata.py
@@ -5,19 +5,17 @@
"""
import copy
-import json
from collections import defaultdict
from datetime import datetime, timedelta
from dateutil import rrule
-from flask import Blueprint, current_app, jsonify
+from flask import Blueprint, jsonify
from freezing.model import meta
from freezing.model.orm import Team
from pytz import utc
from sqlalchemy import text
from freezing.web import config
-from freezing.web.utils import gviz_api
from freezing.web.views.shared_sql import (
indiv_freeze_query,
indiv_segment_query,
@@ -99,25 +97,25 @@ def team_elev_gain():
team_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Score", "type": "number"},
- # {"id":"","label":"","pattern":"","type":"number","p":{"role":"interval"}},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(team_q):
- place = i + 1
- cells = [
- {
- "v": res["team_name"],
- "f": "{0} [{1}]".format(short(res["team_name"]), place),
- },
- {"v": res["cumul_elev_gain"], "f": str(int(res["cumul_elev_gain"]))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["team_name"])
+ values.append(res["cumul_elev_gain"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "elevation gain",
+ "suffix": " ft",
+ "unit": "feet",
+ }
+ )
@blueprint.route("/indiv_elev_gain")
@@ -135,25 +133,25 @@ def indiv_elev_gain():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Elevation", "type": "number"},
- # {"id":"","label":"","pattern":"","type":"number","p":{"role":"interval"}},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["cumul_elev_gain"], "f": str(int(res["cumul_elev_gain"]))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["cumul_elev_gain"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "elevation gain",
+ "suffix": " ft",
+ "unit": "feet",
+ }
+ )
@blueprint.route("/indiv_moving_time")
@@ -171,27 +169,27 @@ def indiv_moving_time():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Moving Time", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
+ tooltips = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {
- "v": res["total_moving_time"],
- "f": str(timedelta(seconds=int(res["total_moving_time"]))),
- },
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["total_moving_time"] / 60)
+ tooltips.append(str(timedelta(seconds=int(res["total_moving_time"]))))
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "tooltips": tooltips,
+ "key": "total moving time",
+ "unit": "minutes",
+ }
+ )
@blueprint.route("/team_moving_time")
@@ -208,29 +206,29 @@ def team_moving_time():
"""
)
- indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
-
- cols = [
- {"id": "name", "label": "Team", "type": "string"},
- {"id": "score", "label": "Moving Time", "type": "number"},
- ]
+ team_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- rows = []
- for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["team_name"],
- "f": "{0} [{1}]".format(short(res["team_name"]), place),
- },
- {
- "v": res["total_moving_time"],
- "f": str(timedelta(seconds=int(res["total_moving_time"]))),
- },
- ]
- rows.append({"c": cells})
+ labels = []
+ ranks = []
+ values = []
+ tooltips = []
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ for i, res in enumerate(team_q):
+ ranks.append(i + 1)
+ labels.append(res["team_name"])
+ values.append(res["total_moving_time"] / 60)
+ tooltips.append(str(timedelta(seconds=int(res["total_moving_time"]))))
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "tooltips": tooltips,
+ "key": "total moving time",
+ "unit": "minutes",
+ }
+ )
@blueprint.route("/indiv_number_sleaze_days")
@@ -239,50 +237,52 @@ def indiv_number_sleaze_days():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Sleaze Days", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["num_sleaze_days"], "f": str(int(res["num_sleaze_days"]))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["num_sleaze_days"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "sleaze days",
+ "suffix": "",
+ "unit": "days",
+ }
+ )
@blueprint.route("/team_number_sleaze_days")
def team_number_sleaze_days():
q = team_sleaze_query()
- indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
-
- cols = [
- {"id": "name", "label": "Team", "type": "string"},
- {"id": "score", "label": "Sleaze Days", "type": "number"},
- ]
+ team_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- rows = []
- for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["team_name"],
- "f": "{0} [{1}]".format(short(res["team_name"]), place),
- },
- {"v": res["num_sleaze_days"], "f": str(int(res["num_sleaze_days"]))},
- ]
- rows.append({"c": cells})
+ labels = []
+ ranks = []
+ values = []
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ for i, res in enumerate(team_q):
+ ranks.append(i + 1)
+ labels.append(res["team_name"])
+ values.append(res["num_sleaze_days"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "sleaze days",
+ "suffix": "",
+ "unit": "days",
+ }
+ )
@blueprint.route("/indiv_kidical")
@@ -303,24 +303,25 @@ def indiv_kidical():
indiv_q = meta.engine.execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Kidical Rides", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["kidical_rides"], "f": str(int(res["kidical_rides"]))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["kidical_rides"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "kidical rides",
+ "suffix": "",
+ "unit": "rides",
+ }
+ )
@blueprint.route("/indiv_freeze_points")
@@ -328,27 +329,25 @@ def indiv_freeze_points():
q = indiv_freeze_query()
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Freeze Points", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {
- "v": res["freeze_points_total"],
- "f": "{0:.2f}".format(res["freeze_points_total"]),
- },
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["freeze_points_total"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "points",
+ "suffix": "",
+ "unit": "Freeze Points",
+ }
+ )
@blueprint.route("/indiv_segment/
")
@@ -361,24 +360,25 @@ def indiv_segment(segment_id):
q, segment_id=segment_id
).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Times Ridden", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["segment_rides"], "f": str(int(res["segment_rides"]))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["segment_rides"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "rides",
+ "suffix": "",
+ "unit": "",
+ }
+ )
@blueprint.route("/team_segment/")
@@ -387,28 +387,29 @@ def team_segment(segment_id):
q = team_segment_query()
- indiv_q = meta.engine.execute(
+ team_q = meta.engine.execute(
q, segment_id=segment_id
).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Team", "type": "string"},
- {"id": "score", "label": "Times Ridden", "type": "number"},
- ]
-
- rows = []
- for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["team_name"],
- "f": "{0} [{1}]".format(short(res["team_name"]), place),
- },
- {"v": res["segment_rides"], "f": str(int(res["segment_rides"]))},
- ]
- rows.append({"c": cells})
+ labels = []
+ ranks = []
+ values = []
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ for i, res in enumerate(team_q):
+ ranks.append(i + 1)
+ labels.append(res["team_name"])
+ values.append(res["segment_rides"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "rides",
+ "suffix": "",
+ "unit": "",
+ }
+ )
@blueprint.route("/indiv_avg_speed")
@@ -427,24 +428,26 @@ def indiv_avg_speed():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Average Speed", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["avg_speed"], "f": "{0:.2f}".format(res["avg_speed"])},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["avg_speed"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "average speed",
+ "suffix": " mph",
+ "unit": "mph",
+ "precision": 1,
+ }
+ )
@blueprint.route("/team_avg_speed")
@@ -462,26 +465,28 @@ def team_avg_speed():
"""
)
- indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
-
- cols = [
- {"id": "name", "label": "Team", "type": "string"},
- {"id": "score", "label": "Average Speed", "type": "number"},
- ]
+ team_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- rows = []
- for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["team_name"],
- "f": "{0} [{1}]".format(short(res["team_name"]), place),
- },
- {"v": res["avg_speed"], "f": "{0:.2f}".format(res["avg_speed"])},
- ]
- rows.append({"c": cells})
+ labels = []
+ ranks = []
+ values = []
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ for i, res in enumerate(team_q):
+ ranks.append(i + 1)
+ labels.append(res["team_name"])
+ values.append(res["avg_speed"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "average speed",
+ "suffix": " mph",
+ "unit": "mph",
+ "precision": 1,
+ }
+ )
@blueprint.route("/indiv_freezing")
@@ -501,24 +506,26 @@ def indiv_freezing():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Miles Below Freezing", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["distance"], "f": "{0:.2f}".format(res["distance"])},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["distance"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": "distance",
+ "suffix": " mi",
+ "unit": "miles",
+ "precision": 1,
+ }
+ )
@blueprint.route("/indiv_before_sunrise")
@@ -538,24 +545,27 @@ def indiv_before_sunrise():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "Before Sunrise", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
+ tooltips = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["dark"], "f": str(timedelta(seconds=int(res["dark"])))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["dark"])
+ tooltips.append(str(timedelta(seconds=int(res["dark"]))))
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "tooltips": tooltips,
+ "key": "time",
+ "unit": "minutes",
+ }
+ )
@blueprint.route("/indiv_after_sunset")
@@ -575,24 +585,27 @@ def indiv_after_sunset():
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": "After Sunset", "type": "number"},
- ]
+ labels = []
+ ranks = []
+ values = []
+ tooltips = []
- rows = []
for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res["dark"], "f": str(timedelta(seconds=int(res["dark"])))},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res["dark"])
+ tooltips.append(str(timedelta(seconds=int(res["dark"]))))
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "tooltips": tooltips,
+ "key": "time",
+ "unit": "minutes",
+ }
+ )
def competition_start():
@@ -843,46 +856,31 @@ def indiv_elev_dist():
left join teams T on T.id = A.team_id
where not R.manual
group by R.athlete_id, athlete_name, team_name
+ order by SUM(R.distance)
;
"""
)
indiv_q = meta.scoped_session().execute(q).fetchall() # @UndefinedVariable
- cols = [
- {"id": "ID", "label": "ID", "type": "string"},
- {"id": "score", "label": "Distance", "type": "number"},
- {"id": "score", "label": "Elevation", "type": "number"},
- {"id": "ID", "label": "Team", "type": "string"},
- {"id": "score", "label": "Average Speed", "type": "number"},
- ]
-
- rows = []
+ labels = []
+ elevations = []
+ distances = []
+ speeds = []
for i, res in enumerate(indiv_q):
- name_parts = res["athlete_name"].split(" ")
- if len(name_parts) > 1:
- short_name = " ".join([name_parts[0], name_parts[-1]])
- else:
- short_name = res["athlete_name"]
-
- if res["team_name"] is None:
- team_name = "(No team)"
- else:
- team_name = res["team_name"]
-
- cells = [
- {"v": res["athlete_name"], "f": short(short_name)},
- {"v": res["total_distance"], "f": "{0:.2f}".format(res["total_distance"])},
- {
- "v": res["total_elevation_gain"],
- "f": "{0:.2f}".format(res["total_elevation_gain"]),
- },
- {"v": team_name, "f": team_name},
- {"v": res["avg_speed"], "f": "{0:.2f}".format(res["avg_speed"])},
- ]
- rows.append({"c": cells})
-
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ labels.append(res["athlete_name"])
+ elevations.append(int(res["total_elevation_gain"]))
+ distances.append(res["total_distance"])
+ speeds.append(res["avg_speed"])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "elevations": elevations,
+ "distances": distances,
+ "speeds": speeds,
+ }
+ )
@blueprint.route("/riders_by_lowtemp")
@@ -949,20 +947,6 @@ def distance_by_lowtemp():
return jsonify({"data": rows})
-def gviz_api_jsonify(*args, **kwargs):
- """
- Override default Flask jsonify to handle JSON for Google Chart API.
- """
- return current_app.response_class(
- json.dumps(
- dict(*args, **kwargs),
- indent=None,
- cls=gviz_api.DataTableJSONEncoder,
- ),
- mimetype="application/json",
- )
-
-
def short(name, max_len=17):
if len(name) < max_len:
return name
@@ -974,27 +958,31 @@ def exec_and_jsonify_query(
q,
display_label,
query_label,
+ suffix,
hover_lambda=lambda res, query_label: str(int(round(res[query_label]))),
):
- cols = [
- {"id": "name", "label": "Athlete", "type": "string"},
- {"id": "score", "label": display_label, "type": "number"},
- ]
-
indiv_q = meta.scoped_session().execute(q).fetchall()
- rows = []
- for i, res in enumerate(indiv_q):
- place = i + 1
- cells = [
- {
- "v": res["athlete_name"],
- "f": "{0} [{1}]".format(short(res["athlete_name"]), place),
- },
- {"v": res[query_label], "f": hover_lambda(res, query_label)},
- ]
- rows.append({"c": cells})
- return gviz_api_jsonify({"cols": cols, "rows": rows})
+ labels = []
+ ranks = []
+ values = []
+
+ for i, res in enumerate(indiv_q):
+ ranks.append(i + 1)
+ labels.append(res["athlete_name"])
+ values.append(res[query_label])
+
+ return jsonify(
+ {
+ "labels": labels,
+ "values": values,
+ "ranks": ranks,
+ "key": query_label,
+ "suffix": suffix,
+ "unit": display_label,
+ "precision": 1,
+ }
+ )
def fmt_date(dt):
@@ -1055,7 +1043,7 @@ def hl(res, ql):
res["loc"],
)
- return exec_and_jsonify_query(q, "Temperature", "temp_start", hover_lambda=hl)
+ return exec_and_jsonify_query(q, "", "temp_start", "º F", hover_lambda=hl)
@blueprint.route("/indiv_snowiest")
@@ -1078,7 +1066,7 @@ def hl(res, ql):
res["loc"],
)
- return exec_and_jsonify_query(q, "Snowfall", "snow", hover_lambda=hl)
+ return exec_and_jsonify_query(q, "Snowfall", "snow", '"', hover_lambda=hl)
@blueprint.route("/indiv_rainiest")
@@ -1101,4 +1089,4 @@ def hl(res, ql):
res["loc"],
)
- return exec_and_jsonify_query(q, "Rainfall", "rain", hover_lambda=hl)
+ return exec_and_jsonify_query(q, "Rainfall", "rain", '"', hover_lambda=hl)
diff --git a/freezing/web/views/general.py b/freezing/web/views/general.py
index 8907a2c..520c7d2 100644
--- a/freezing/web/views/general.py
+++ b/freezing/web/views/general.py
@@ -404,6 +404,13 @@ def distance_by_lowtemp():
)
+@blueprint.route("/explore/riders_by_lowtemp")
+def riders_by_lowtemp():
+ return render_template(
+ "explore/riders_by_lowtemp.html",
+ )
+
+
@blueprint.route("/explore/team_cumul")
def team_cumul_trend():
return render_template(
diff --git a/pyproject.toml b/pyproject.toml
index da57539..b1f284e 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,6 @@ dependencies = [
"marshmallow==3.23.2",
"python-instagram==1.3.2",
"pytz==2024.2",
- "simplejson==3.19.3",
"stravalib==1.2.0",
]
classifiers = [