-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
572 lines (460 loc) · 24.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Original Version: Taehoon Kim (http://carpedm20.github.io)
# + Source: https://github.com/carpedm20/DCGAN-tensorflow/blob/e30539fb5e20d5a0fed40935853da97e9e55eee8/model.py
# + License: MIT
# [2016-08-05] Modifications for Completion: Brandon Amos (http://bamos.github.io)
# + Source: https://github.com/bamos/dcgan-completion.tensorflow/blob/master/model.py
# + License: MIT
# [2016-09] Modifications for Projection and Face Math: Irmak Sirer (http://www.irmaksirer.com)
# + License: MIT
from __future__ import division
import os
import time
import errno
from glob import glob
import tensorflow as tf
from six.moves import xrange
from ops import *
from utils import *
class DCGAN(object):
def __init__(self, sess, image_size=64, is_crop=False,
batch_size=64, sample_size=64,
z_dim=100, gf_dim=64, df_dim=64,
gfc_dim=1024, dfc_dim=1024, c_dim=3,
checkpoint_dir=None, lam=0.1):
"""
Args:
sess: TensorFlow session
batch_size: The size of batch. Should be specified before training.
z_dim: (optional) Dimension of dim for Z. [100]
gf_dim: (optional) Dimension of gen filters in first conv layer. [64]
df_dim: (optional) Dimension of discrim filters in first conv layer. [64]
gfc_dim: (optional) Dimension of gen untis for for fully connected layer. [1024]
dfc_dim: (optional) Dimension of discrim units for fully connected layer. [1024]
c_dim: (optional) Dimension of image color. [3]
"""
self.sess = sess
self.is_crop = is_crop
self.batch_size = batch_size
self.image_size = image_size
self.sample_size = sample_size
self.image_shape = [image_size, image_size, 3]
self.z_dim = z_dim
self.gf_dim = gf_dim
self.df_dim = df_dim
self.gfc_dim = gfc_dim
self.dfc_dim = dfc_dim
self.lam = lam
self.c_dim = 3
# batch normalization : deals with poor initialization helps gradient flow
self.d_bn1 = batch_norm(name='d_bn1')
self.d_bn2 = batch_norm(name='d_bn2')
self.d_bn3 = batch_norm(name='d_bn3')
self.g_bn0 = batch_norm(name='g_bn0')
self.g_bn1 = batch_norm(name='g_bn1')
self.g_bn2 = batch_norm(name='g_bn2')
self.g_bn3 = batch_norm(name='g_bn3')
self.checkpoint_dir = checkpoint_dir
self.build_model()
self.model_name = "DCGAN.model"
def build_model(self):
self.images = tf.placeholder(
tf.float32, [None] + self.image_shape, name='real_images')
self.sample_images= tf.placeholder(
tf.float32, [None] + self.image_shape, name='sample_images')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.z_sum = tf.histogram_summary("z", self.z)
self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.sampler = self.sampler(self.z)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)
self.d_sum = tf.histogram_summary("d", self.D)
self.d__sum = tf.histogram_summary("d_", self.D_)
self.G_sum = tf.image_summary("G", self.G)
self.d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
tf.ones_like(self.D_)))
self.d_loss_real_sum = tf.scalar_summary("d_loss_real", self.d_loss_real)
self.d_loss_fake_sum = tf.scalar_summary("d_loss_fake", self.d_loss_fake)
self.d_loss = self.d_loss_real + self.d_loss_fake
self.g_loss_sum = tf.scalar_summary("g_loss", self.g_loss)
self.d_loss_sum = tf.scalar_summary("d_loss", self.d_loss)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'd_' in var.name]
self.g_vars = [var for var in t_vars if 'g_' in var.name]
self.saver = tf.train.Saver(max_to_keep=1)
# Projection
# l1 norm
# self.full_contextual_loss = tf.reduce_sum(
# tf.contrib.layers.flatten(tf.abs(self.G - self.images)), 1)
# l2 norm
self.full_contextual_loss = tf.reduce_sum(
tf.contrib.layers.flatten(tf.square(self.G - self.images)), 1)
self.perceptual_loss = self.g_loss
self.project_loss = self.full_contextual_loss + self.lam*self.perceptual_loss
self.grad_project_loss = tf.gradients(self.project_loss, self.z)
# Completion
self.mask = tf.placeholder(tf.float32, [None] + self.image_shape, name='mask')
self.masked_contextual_loss = tf.reduce_sum(
tf.contrib.layers.flatten(
tf.abs(tf.mul(self.mask, self.G) - tf.mul(self.mask, self.images))), 1)
self.complete_loss = self.masked_contextual_loss + self.lam*self.perceptual_loss
self.grad_complete_loss = tf.gradients(self.complete_loss, self.z)
def train(self, config):
data = glob(os.path.join(config.dataset, "*.png"))
#np.random.shuffle(data)
assert(len(data) > 0)
d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss, var_list=self.g_vars)
tf.initialize_all_variables().run()
self.g_sum = tf.merge_summary(
[self.z_sum, self.d__sum, self.G_sum, self.d_loss_fake_sum, self.g_loss_sum])
self.d_sum = tf.merge_summary(
[self.z_sum, self.d_sum, self.d_loss_real_sum, self.d_loss_sum])
self.writer = tf.train.SummaryWriter("./logs", self.sess.graph)
sample_z = np.random.uniform(-1, 1, size=(self.sample_size , self.z_dim))
sample_files = data[0:self.sample_size]
sample = [get_image(sample_file, self.image_size, is_crop=self.is_crop) for sample_file in sample_files]
sample_images = np.array(sample).astype(np.float32)
counter = 1
start_time = time.time()
if self.load(self.checkpoint_dir):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
for epoch in xrange(config.epoch):
data = glob(os.path.join(config.dataset, "*.png"))
batch_idxs = min(len(data), config.train_size) // self.batch_size
for idx in xrange(0, batch_idxs):
batch_files = data[idx*config.batch_size:(idx+1)*config.batch_size]
batch = [get_image(batch_file, self.image_size, is_crop=self.is_crop)
for batch_file in batch_files]
batch_images = np.array(batch).astype(np.float32)
batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
.astype(np.float32)
# Update D network
_, summary_str = self.sess.run([d_optim, self.d_sum],
feed_dict={ self.images: batch_images, self.z: batch_z })
self.writer.add_summary(summary_str, counter)
# Update G network
_, summary_str = self.sess.run([g_optim, self.g_sum],
feed_dict={ self.z: batch_z })
self.writer.add_summary(summary_str, counter)
# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
_, summary_str = self.sess.run([g_optim, self.g_sum],
feed_dict={ self.z: batch_z })
self.writer.add_summary(summary_str, counter)
errD_fake = self.d_loss_fake.eval({self.z: batch_z})
errD_real = self.d_loss_real.eval({self.images: batch_images})
errG = self.g_loss.eval({self.z: batch_z})
counter += 1
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
% (epoch, idx, batch_idxs,
time.time() - start_time, errD_fake+errD_real, errG))
if np.mod(counter, 100) == 1:
samples, d_loss, g_loss = self.sess.run(
[self.sampler, self.d_loss, self.g_loss],
feed_dict={self.z: sample_z, self.images: sample_images}
)
save_images(samples, [8, 8],
'./samples/train_{:02d}_{:05d}.png'.format(epoch, idx))
print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss))
if np.mod(counter, 500) == 2:
self.save(config.checkpoint_dir, counter)
def find_optimal_z(self,
loss_function,
loss_gradient,
images,
mask_for_all_images=None,
current_batch_size = None,
init_z_hats=None,
n_iterations=1000,
learning_rate=0.01,
momentum=0.9,
output_every_nth_step=50,
projected_img_output_dir=None,
z_vectors_output_dir=None):
# initialize (sizes, starting vectors and starting velocity)
if current_batch_size is None:
current_batch_size = self.batch_size
if init_z_hats is None:
init_z_hats = np.random.uniform(-1, 1, size=(self.batch_size,
self.z_dim))
z_hats = init_z_hats
v = 0
# steps of gradient descent with momentum
for step in xrange(n_iterations):
feed_dict = {
self.z: z_hats,
self.images: images,
}
if mask_for_all_images is not None:
feed_dict[self.mask] = mask_for_all_images
run = [loss_function, loss_gradient, self.G]
loss, gradient, generated_images = self.sess.run(run, feed_dict=feed_dict)
# update velocity
v_prev = np.copy(v)
v = momentum * v_prev - learning_rate * gradient[0]
# update our current best z_hat vectors
z_hats += -momentum * v_prev + (1 + momentum) * v
# if this update pushed us out of the (-1,1) domain of z,
# clip it to stay in. This makes it "projected" gradient descent
# check here for a concise explanation:
# http://math.stackexchange.com/questions/571068/what-is-the-difference-between-projected-gradient-descent-and-ordinary-gradient
z_hats = np.clip(z_hats, -1, 1)
# log the progress and save the intermediary z_hats and generated images
# we get along the way during optimization
if step % output_every_nth_step == 0 or step == (n_iterations-1):
loss_value = np.mean(loss[0:self.batch_size])
msg = "Searching z, step {}. Loss = {}".format(step, loss_value)
print(msg)
if projected_img_output_dir:
output_path = os.path.join(projected_img_output_dir, 'step_{:05d}.png'.format(step))
save_image_batch(generated_images,
current_batch_size,
output_path)
if z_vectors_output_dir:
output_path = os.path.join(z_vectors_output_dir, 'last-z')
save_z_vector_batch(z_hats,
self.batch_size,
output_path)
# at the end of these iterations, we're done, we have found
# the z_hat vectors and the related generated images for this batch
return z_hats, generated_images
def z_to_image(self, z):
# requires a model to be already initialized and ran
num_z_vectors = z.shape[0]
assert num_z_vectors <= self.batch_size, "Can't draw more images than batch size in one go"
padded_z = np.zeros(shape=(self.batch_size, self.z_dim), dtype=np.float32)
padded_z[:num_z_vectors] = z
image = self.sess.run(self.sampler, feed_dict={self.z: padded_z})
return image
def interpolate(self, config=None, num_frames=64):
# initialize and load a trained checkpoint model
tf.initialize_all_variables().run()
isLoaded = self.load(self.checkpoint_dir)
assert(isLoaded)
# load vectors if given (use random vectors if not)
if config.vector1:
z1 = load_z_vector(config.vector1)
else:
z1 = np.random.uniform(-1, 1, size=(1, self.z_dim))
if config.vector2:
z2 = load_z_vector(config.vector2)
else:
z2 = np.random.uniform(-1, 1, size=(1, self.z_dim))
dz = (z2 - z1) / float(num_frames)
z = np.array([z1 + i*dz for i in xrange(num_frames)], dtype=np.float32)
z = z.reshape(-1, self.z_dim)
transition_frames = self.z_to_image(z)
ensure_directory(config.outDir)
for frame_no in xrange(num_frames):
output_path = os.path.join(config.outDir, "frame_{:02d}.png".format(frame_no))
frame = transition_frames[frame_no, :, :]
save_single_image(frame, output_path)
def project(self, config):
# create the output directories
output_dir = config.outDir
projected_img_output_dir = os.path.join(output_dir, 'projected')
z_vectors_output_dir = os.path.join(output_dir, 'z_vectors')
for directory in (projected_img_output_dir, z_vectors_output_dir):
ensure_directory(directory)
# initialize tensorflow variables
tf.initialize_all_variables().run()
# load a trained checkpoint model
isLoaded = self.load(self.checkpoint_dir)
assert(isLoaded)
num_images = len(config.imgs)
num_batches = int(np.ceil(num_images/self.batch_size))
for batch_no in xrange(0, num_batches):
# create subdirectory for output (projected images for this batch)
batch_img_dir = os.path.join(projected_img_output_dir, 'batch_{:03d}'.format(batch_no))
batch_vectors_dir = os.path.join(z_vectors_output_dir, 'batch_{:03d}'.format(batch_no))
ensure_directory(batch_img_dir)
ensure_directory(batch_vectors_dir)
# read images of this batch into an array
batch_start_id = batch_no * self.batch_size
batch_end_id = min((batch_no+1) * self.batch_size,num_images)
current_batch_size = batch_end_id - batch_start_id
batch_files = config.imgs[batch_start_id:batch_end_id]
batch_images = [get_image(batch_file, self.image_size, is_crop=self.is_crop)
for batch_file in batch_files]
batch_images = np.array(batch_images).astype(np.float32)
# if this is the final batch, pad the array with zeros to
# make this final batch the same size as the others
if current_batch_size < self.batch_size:
pad_size = ((0, int(self.batch_size-current_batch_size)), (0,0), (0,0), (0,0))
batch_images = np.pad(batch_images, pad_size, 'constant')
batch_images = batch_images.astype(np.float32)
# save the original image in the output directory for convenience
# make a matrix of images (8 columns)
save_image_batch(batch_images,
current_batch_size,
os.path.join(config.outDir, 'batch_{:03d}-0riginals.png'.format(batch_no)))
# projected gradient descent with momentum to find the z_hats
# that maximize the projection loss (full contextual loss and perceptual loss)
(z_hats,
generated_images) = self.find_optimal_z(loss_function = self.project_loss,
loss_gradient = self.grad_project_loss,
images = batch_images,
current_batch_size = current_batch_size,
n_iterations= config.nIter,
learning_rate = config.lr,
momentum = config.momentum,
output_every_nth_step=25,
projected_img_output_dir = batch_img_dir,
z_vectors_output_dir = batch_vectors_dir)
# save the final z vectors for all images in the batch
output_path = os.path.join(z_vectors_output_dir, 'batch_{:03d}'.format(batch_no))
save_z_vector_batch(z_hats,
current_batch_size,
output_path)
# take the average of all returned z_hats and save the corresponding image
# it is the "average" of all images in this batch (but averaged in z-space,
# not pixel-space, of course)
# (since we are working with batches, this will be a single image in a whole
# batch, the rest is zero padding)
nonzero_z_hats = z_hats[:current_batch_size, :]
average_z = nonzero_z_hats.mean(axis=0)
average_image = self.z_to_image(average_z)
output_path = os.path.join(projected_img_output_dir, 'batch_{:03d}-average-z-img.png'.format(batch_no))
save_image_batch(average_image, 1, output_path)
def complete(self, config):
try:
os.makedirs(os.path.join(config.outDir, 'hats_imgs'))
except OSError as e:
if e.errno != errno.EEXIST:
raise
try:
os.makedirs(os.path.join(config.outDir, 'completed'))
except OSError as e:
if e.errno != errno.EEXIST:
raise
tf.initialize_all_variables().run()
isLoaded = self.load(self.checkpoint_dir)
assert(isLoaded)
# data = glob(os.path.join(config.dataset, "*.png"))
nImgs = len(config.imgs)
batch_idxs = int(np.ceil(nImgs/self.batch_size))
if config.maskType == 'random':
raise NotImplementedError('random mask not yet implemented')
elif config.maskType == 'center':
scale = 0.25
assert(scale <= 0.5)
mask = np.ones(self.image_shape)
sz = self.image_size
l = int(self.image_size*scale)
u = int(self.image_size*(1.0-scale))
mask[l:u, l:u, :] = 0.0
elif config.maskType == 'left':
raise NotImplementedError('left mask not yet implemented')
elif config.maskType == 'full':
mask = np.ones(self.image_shape)
else:
assert(False)
for idx in xrange(0, batch_idxs):
l = idx*self.batch_size
u = min((idx+1)*self.batch_size, nImgs)
batchSz = u-l
batch_files = config.imgs[l:u]
batch = [get_image(batch_file, self.image_size, is_crop=self.is_crop)
for batch_file in batch_files]
batch_images = np.array(batch).astype(np.float32)
if batchSz < self.batch_size:
print(batchSz)
padSz = ((0, int(self.batch_size-batchSz)), (0,0), (0,0), (0,0))
batch_images = np.pad(batch_images, padSz, 'constant')
batch_images = batch_images.astype(np.float32)
batch_mask = np.resize(mask, [self.batch_size] + self.image_shape)
zhats = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
v = 0
nRows = np.ceil(batchSz/8)
nCols = 8
save_images(batch_images[:batchSz,:,:,:], [nRows,nCols],
os.path.join(config.outDir, 'before.png'))
masked_images = np.multiply(batch_images, batch_mask)
save_images(masked_images[:batchSz,:,:,:], [nRows,nCols],
os.path.join(config.outDir, 'masked.png'))
for i in xrange(config.nIter):
fd = {
self.z: zhats,
self.mask: batch_mask,
self.images: batch_images,
}
run = [self.complete_loss, self.grad_complete_loss, self.G]
loss, g, G_imgs = self.sess.run(run, feed_dict=fd)
v_prev = np.copy(v)
v = config.momentum*v - config.lr*g[0]
zhats += -config.momentum * v_prev + (1+config.momentum)*v
np.clip(zhats, -1, 1)
if i % 50 == 0:
print(i, np.mean(loss[0:batchSz]))
imgName = os.path.join(config.outDir,
'hats_imgs/{:05d}.png'.format(i))
nRows = np.ceil(batchSz/8)
nCols = 8
save_images(G_imgs[:batchSz,:,:,:], [nRows,nCols], imgName)
inv_masked_hat_images = np.multiply(G_imgs, 1.0-batch_mask)
completeed = masked_images + inv_masked_hat_images
imgName = os.path.join(config.outDir,
'completed/{:05d}.png'.format(i))
save_images(completeed[:batchSz,:,:,:], [nRows,nCols], imgName)
def discriminator(self, image, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4
def generator(self, z):
self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)
self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(self.h0))
self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
[self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
h1 = tf.nn.relu(self.g_bn1(self.h1))
h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
[self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
h2 = tf.nn.relu(self.g_bn2(h2))
h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
[self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
h3 = tf.nn.relu(self.g_bn3(h3))
h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
[self.batch_size, 64, 64, 3], name='g_h4', with_w=True)
return tf.nn.tanh(h4)
def sampler(self, z, y=None):
tf.get_variable_scope().reuse_variables()
h0 = tf.reshape(linear(z, self.gf_dim*8*4*4, 'g_h0_lin'),
[-1, 4, 4, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(h0, train=False))
h1 = conv2d_transpose(h0, [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1')
h1 = tf.nn.relu(self.g_bn1(h1, train=False))
h2 = conv2d_transpose(h1, [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2')
h2 = tf.nn.relu(self.g_bn2(h2, train=False))
h3 = conv2d_transpose(h2, [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3')
h3 = tf.nn.relu(self.g_bn3(h3, train=False))
h4 = conv2d_transpose(h3, [self.batch_size, 64, 64, 3], name='g_h4')
return tf.nn.tanh(h4)
def save(self, checkpoint_dir, step):
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, self.model_name),
global_step=step)
def load(self, checkpoint_dir):
print(" [*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
return True
else:
return False