-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCastleData.txt
2065 lines (1810 loc) · 393 KB
/
CastleData.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Castle 1,Castle 2,Castle 3,Castle 4,Castle 5,Castle 6,Castle 7,Castle 8,Castle 9,Castle 10,Why did you choose your troop deployment?
100,0,0,0,0,0,0,0,0,0,"because, I am number one!"
52,2,2,2,2,2,2,12,12,12,"I need to win at least 4 castles to win the game. Any combination of 7 castles wins the game. I assume that the border cases of trying to win 1-7 or 1 and 8-10 will be popular. If possible, I should like to be able to beat either strategy.
One way to do that would be to play minimally on all numbers except for 1. Then I take the ones they don't want, but I also steal castle 1, which is less sought after.
Of course, I lose to the ""10s all around"" strategy, which I imagine will also be popular.
Notice that the key is not beating a randomly generated opponent, but beating the most opponents, which means I want to be able to beat the most popular strategies. Hmm.
The method I've devised will beat ""10s all around"" and has a shot at beating folks who go all in on another strategy. I expect to get beaten a lot, though, by folks who pick a different set of castles they want to win. Oh well. I've already spent too long on this. If nothing else, I've given you another weird data point! :)"
26,26,26,16,1,1,1,1,1,1,The top 3 are necessary for a majority and the 4th is also needed. The rest are filled in case my opponent leaves them empty.
26,5,5,5,6,7,26,0,0,0,"Most people will focus on high number, but castles 1-7 equal 28 points, enough to win. Realizing that someone may attempt to take castles 8-10 and castle 1, i redeployed troops to castle 1 to thwart that strategy. "
25,0,0,0,0,0,0,25,25,25,"The total points up for grabs is 55, and to win the war I need 28 points. I want to get 28 points by using the least number of castles, so I can put more soldiers in each castle and increase my odds of winning that castle. I can earn 28 points by winning castles 1, 8, 9, and 10. So I will put 25 soldiers each in castles 1, 8, 9, and 10 to maximize my odds of winning each of those castles simultaneously."
25,0,0,0,0,0,0,25,25,25,Submission #4. A variation of my third submission. Equally divided among just enough points to win. (Not convinced this will win either).
25,0,0,0,0,0,0,25,25,25,"There are 55 points up for grabs, so 28 are needed to win. Winning castles 1,8,9,10 are the fewest number of castles needed reach 28 points. Castle 1 is as important as castle 10 for getting to 28 points. "
25,0,0,0,0,0,0,25,25,25,"Since there are 55 available points, I only need to win 27.5 or more points to win any given battle. By maximizing my soldiers in the four castles that are worth 28 points combined, I maximize my chances of beating more evenly distributed enemies. "
23,1,1,1,1,2,2,23,23,23,"The ones and twos are mostly to pick up any undefended castles, while I hope to grab the highest castles to get me over 27.5. Have to admit I don't know much game theory, so it's mostly just a guess."
21,18,15,13,11,9,6,4,2,1,"On average 1.81 soldiers per point, with some slight weighting to the top castles and unweighting the lower castles."
21,0,0,0,0,0,0,26,26,27,"If you were to win castles 10, 9, 8, and 1 each time, you would win every matchup. I put all of my soldiers on those castles, with a few extra on the more valuable castles to beat out anyone with the same strategy"
20,12,13,13,14,14,14,0,0,0,Get to 28 by conquering the smallest towers
20,0,0,0,0,0,0,25,25,30,it put high power making it easy to win the castles with troops.
19,17,15,13,11,9,7,5,3,1,?
19,1,1,1,1,1,1,25,25,25,need 28 to win
19,1,1,1,1,1,1,25,25,25,"The total number of points is 55 so you need 28 points to win the war.
The smallest combination of castles to win 28 points is 10,9,8,1 so to maximize your chances you should just split your army by 25 soldier each.
But this won't work because the other castles will be undefended and an enemy could easily put 90 soldier on Castle 10 and 1 soldier on each undefended castle winning the war.
So Castle 1 is defended by 19 soldier to be able to defended the rest of the castles with 1 soldier.
Running a simulation with a random number generator gives me a 98% chances of winning with this combination, althought it is sunday night and I might have made some fundamental mistake in the code"
18,18,2,18,18,18,2,2,2,2,To disrupt strategies that rely on lower value castles.
18,16,14,12,10,8,6,4,2,1,
16,16,16,16,16,16,1,1,1,1,"Evenly distributing troops at 6 castles gives me a great chance to win a simple majority, and single troops at the remaining 4 gives me an auto win if my enemy leaves any empty. "
16,11,11,11,11,18,19,1,1,1,I can get 28 points out of 55 from the lower 7 castles so concentrate force there. Send a token soldier to the top castles in case someone tries a more extreme version of my strategy. Bias soldiers towards castles 6 and 7 because a 'aim at the higher castles' strategy is likely to still be interested in those. Send a few more to castle one because I could see a strategy of going for the top three castles and the lowest one.
15,14,14,14,14,14,15,0,0,0,"Target to win is 28 points. Concentrating deployment on highest-value castles means I need to capture 10, 9, 8 and 1 to reach target. Highest-value castles are likely to draw most troops by my opponent. So I am going to focus on capturing enough castles from the lowest value upwards until I hit the target, which is castles #1-7 inclusive. Divide troops equally, with the spares focused on 1 (crucial to the 10-9-8-1 strategy set out above) & 7 (because it is the highest value of my targeted castles)."
15,13,13,14,14,14,14,1,1,1,"Contrarian strategy to go for bottom 7 (which sums to 28) rather than 10+9+8+another. Putting 1 on 8,9,10 to beat people who may use a similar strategy but forget that by getting these higher ones they win vs similar strategies. Higher on 1 to beat strategies that realize that 10+9+8+1=28 and guess 100/7=14 is lowest bound to beat on 1 (and assume people would pretty much always put the least amount of soldiers on castle 1). Even if using 10+9+8+other, unlikely to use higher than 12 or 13 on the lower castle because of the need to focus on top heavy. Strategies that assign soldiers based on castle value mostly beaten (unless using smoothing factor but this would lose to most top heavy strategies). Also beats 10 everywhere. Will see!"
15,7,8,5,5,11,10,11,10,18,People want 1 and 10 so I'm fortifying them
15,5,10,12,15,1,12,10,5,15,"Assuming opponents will want to send large forces at the beginning and end of their siege I fortified the first and last castles with relatively more troop. Same with the middle castle. The solitary soldier in castle six is a sacraficial lamb. Knowing I am bound to lose a castle or two, I am presuming that I can give up one castle to properly fortify more and eventually win the battles. "
15,3,7,10,15,19,25,2,2,2,"There are 55 total points available. Half-.5 of those are up for grabs in just the top three castles. So a strategy to just hold the top 3 castles would fall barely short of success; a strategy of holding the top 3 castles plus Castle 1 would barely succeed, and Castle 1 might be viewed as the lowest-cost place to pick up that one needed point. Assuming that most people will gravitate towards this upper-tier strategy, I chose to do something that would win against it."
15,1,1,1,2,2,3,25,25,25,"Need 28 pts to win a war. I assumed there are no loser points in war. I considered various strategies, even dist, weighted dist, lower focus to 28 pts, upper focus to 28 pts, and a few variants before settling on the above which seemed to have the best results."
15,0,0,0,0,0,0,17,26,42,Submission #5. I guess I have the second most confidence in this (of my 6 submissions). Defending just enough points/castles to win and dividing them unequally in (probably vain) hopes that I can win.
14,14,14,14,14,15,15,0,0,0,"To win a war I need 28 victory points (round up half of the total number of available points). Figure most people are going to try to target the high value targets (8,9,10) which together make 27 points. So if I can capture the rest, I win."
14,14,14,14,14,15,15,0,0,0,"With limited math skills, my basic thinking is that in this 1v1 scenario I just need 28 points to be victorious since the total number of points is 55. 1+2, +7 = 28, where 8+9+10 = 27. So I'm able to capture the first 7 castles while leaving my opponent to deploy most of his troops on the higher value castles (because who wouldn't normally want the highest value castle?) then I have the highest chance of succeeding and capturing 28 points. Hope I won. PS I see that double half-zip."
14,14,14,14,14,15,15,0,0,0,"You need 28 points (a majority of 55) to win. I am guessing that it will be easier to do that if I focus all of my troops on 1-7 and none on 8 through 10, because I think the majority of people will overvalue those. "
14,14,14,14,14,14,16,0,0,0,"There are 55 points total, and I need 28 to win. Most people will concentrate on the higher numbers. "
14,5,6,8,10,12,14,10,10,11,"Long story short, a ton of meta-gaming. I'm an avid gamer, so analyzing strategies that are in 'meta' is something I do often. I developed 6 (really 3 archetypes) solid strategies, which would each win in a random environment. The 'uber meta' strategy that won against every strong, solid strategy whilst still being able to win an 'average' game against randoms was this one, developed out of my ""Empty Castle"" strategy. I know this may sound pretentious, but if I win, I would very much like to show you my ""strategy notes"". They're too complicated to describe in words, but pictures could give you a better idea. Cheers!"
13,13,13,14,14,15,15,1,1,1,Need 28 points to win = win castles 1 through 7. Spread troops close to evenly among those castles and put 1 troop each on 8-10 in case opponent is using similar strategy.
13,13,13,13,13,13,13,3,3,3,"I chose this troop deployment because 28 victory points are needed to win. Therefore, if I won all of the lowest 7 castles, then I'd win, but I put some on the last three in case someone else highly concentrates their troops in other places."
13,7,17,8,11,6,13,7,9,9,Had some wars on excel tempted to do a straight 10 per castle though.
13,7,10,13,16,19,22,0,0,0,"forfeit on 8,9,10, overweight 1, "
13,3,13,31,24,11,1,1,2,1,I figured people would go after the later castles and keep their deployments balanced
13,0,0,0,0,0,0,29,29,29,"Seeing as there are only 55 total points available, you only need 28 victory points to win. The ""easiest"" way to do this (in terms of total number of castles won) is Castles 1, 8, 9 and 10.
I then split the number of soldiers such that the ratio of soldiers at castles 8 to 9 to 10 is 1:1:1 and the number of soldiers at castle 1 is greater than 10.
This strategy will beat anyone who splits evenly between the 10 castles, and (I'm hoping) will beat a decent number of people who go for the same four castles.
An example strategy this would lose to is is someone split all 100 of their troops between e.g. Castles 9 & 10. I decided not to employ a similar strategy since I think more people will try something similar to mine rather than something somewhat counter-intuitive like betting all their troops on only two castles (although this isn't really based on any evidence)."
13,0,0,0,0,0,0,29,29,29,Focus all troops on the fewest number of castles that would win the minimum 28 points necessary to win.
12,12,12,12,15,17,20,0,0,0,I gave up 3 castles and tried to win 7. My hope was that others would try to win the high point bases and I would therefore be able to steal the bottom bases and the win.
12,12,12,12,13,13,26,0,0,0,"I assumed that the most popular strategies would be a distribution close to 10 everywhere, a distribution close to putting a number of solders in each castle equal to (100 * castle # /55) and strategies which only attack castles 7 through 10. This strategy requires that I win castles 1 through 7 so each castle is worth the same to me, except I need to make sure I steal castle 7 from the people only going for 7-10 (and one of the variations there is to play 25 soldiers across the board)."
12,12,12,12,13,13,13,13,0,0,Trying to make them waste troops on 9-10
12,12,12,12,12,12,26,1,1,0,Beat the 10x10 strategy or any that over values the last 3 castles. If you win 7 you have 28/55 pts.
12,12,12,12,12,12,12,12,2,2,I does not matter if I lose more than one castle from 1-8. None are more important than the other. 7/8 in any combnation wins here. I choose to use 2 in castle 9 and 10 to pick off empty castles or somebody that chooses to put 1 in there.
12,12,8,8,10,10,10,10,10,10,Just enough to trip up a full 10-10 average deployment (maybe? :) )
12,12,2,4,4,11,19,10,18,8,"Used a random number formula which summed to 100. Recalculated a few times to get some heavier numbers near the castles 6-9, since I assumed most people would heavily load castle 10."
11,12,13,14,15,17,18,0,0,0,"While last few castle have most points, they are also more heavily defended. I am shifting my troops down the order, and give up the big castles. Smaller castles are easily overwhelmed by the extra troops I placed."
11,12,13,14,15,17,18,0,0,0,"There are 55 total points available, so 28 points are necessary to win. I figure a lot of people will focus on winning the high value castles, so I will focus on winning enough low value castles. I didn't think about this strategy very long, but I hope I beat somebody."
11,12,13,14,15,16,19,0,0,0,"Out of 55 points you want 28. You want to put more troops in higher valued castles, however by using only 1-7 (and conceding the highest 3 castles) I can reach the necessary 28 points. I divided it evenly between the castles with a singly increasing importance on each higher castle. The added remainder went to the highest sought after castle. "
11,12,13,14,15,16,19,0,0,0,"sum of points for winning castles 1-7 is greater than points for 8-10. i'll let others win those. need to be able to beat people that send 1/10 to every castle, so castle #1 needs at least 11 soldiers. increased by one up to castle #6, then send the rest (19 soldiers) to castle #7"
11,12,13,14,15,16,17,0,0,2,We only need to get 28 of the 55 victory points to win. Castles 1-7 deliver that for us. Let others focus on trying to get Castles 8-10. Put a leftover 2 on 10 to counter anybody else trying a similar strategy of ignoring Castle 10.
11,11,12,14,14,18,20,0,0,0,"The goal is not to win all the castles; the goal is to win the majority of the 55 points possible. I assume that more people will focus on winning the higher point values (7, 8, 9, 10) so I will take the opposite strategy. I can win 28 points if I win castles 1-7, so I split my troops among those castles, more or less equally. I can assume that, if people try a 1/8/9/10 strategy, they will not weight 1 as highly."
11,11,12,13,14,16,20,1,1,1,"Beats strategies that choose 10 equally, prioritizes the first 7 castles since 1+2+3+...+7=28 > 55-28 = 27.
1 bids on Castles 8-10 to deter people from not putting any troops in those areas at all."
11,11,11,13,16,18,20,0,0,0,"I chose to not contest 8, 9, and 10 which may be attractive to go after since they are the highest point value castles, and save my troops for going after castles 1-7. If you are able to win castles 1-7, you automatically will win with a score of 28-27. I chose to at least put greater than 10 soldiers at each castle that I wanted to contend for, such that I would win if my opponent distributes evenly (i.e. 10 soldiers at each castle), that I would still win castles 1-7. I then increased my troop levels for castles 4-7 such that all 100 soldiers were distributed, with castle 7 receiving my most troops, in case my opponent tries to stack all or most of their soldiers at the higher value castles. Additionally, if my opponent also puts 0 troops at castles 8-10, we would split points and I would have a chance for an even larger number of victory points."
11,11,11,12,12,13,27,1,1,1,"Half of available points is 27.5. If I win castles 1-7, that is 28. If someone distributed evenly I want more than 10 on the lower castles. If they try for the top 4 I want to have more than 25 on castle 7. If they try for a relative expected value strategy I want more than 12 on castle 6. If they try my strategy (bottom 7) I want to steal castles 8-10 with the minimum number of troops. "
11,11,11,11,13,17,26,0,0,0,"Castles 1-7 are enough to get the majority of the points. This allotment defends against putting 10 in every castle and putting 25 in the top 4 castles, and should beat many strategies that focus on seriously competing for the top castles."
11,11,11,11,12,16,22,2,2,2,"I did not put a focus on the top 3 numbers because if I captured the bottom 7 I would win, and I figured others would place a large amount in the 10-9-8 castles. I would have no real ability to guess the arrangement others used for the big 3, so I went small. I believed I needed to be able to beat a 10 soldier in every castle lineup, so I needed at least 11 soldiers in every castle numbered 1-7. I decided the 7 castle was likely my most important, so I wanted to creep the people creeping 20. With the 6 I creeped 15, and the 5 I creeped people creeping 10. All of the other low castles I creeped 10. In order to beat others running a low castle strategy I creeped people putting 1 in the 10-9-8 castles."
11,11,11,11,12,12,26,2,2,2,"To win each round, you only need to win 28 points. Winning any more than 28 points doesn't do you any good - a win is a win, whether by 1 point or 10 points. I identified what I believe will be popular strategies, and developed one that can beat them. I suspect the most popular strategies will be the Even All Strategy, the Top 4 Strategy, and the Bottom 7 Strategy. I also believe some players will employ versions of the Marginal Strategy, which I employ here. I am playing what I call the Marginal-Low Strategy. This troop deployment is susceptible to a variation of the Even Strategy that evenly distributes forces to a smaller number of castles, rather than 10 across the board."
11,11,11,11,12,12,26,0,0,6,"I basically tried to come up with a solution that would beat the most common solutions I could think of. Being that I had no idea what others would submit, seemed like the best thing to do."
11,11,11,11,11,22,23,0,0,0,"Over half the points are in 1 - 7 (28) vs (27) in 8, 9, 10. This will beat an even spread of 10 x 10, or 5 x 20 in the top 5 castles. This should beat most strategies that put most points into the top 3 castles. The only strategy it would lose to would be a 6 -10 castle strategy that weighted its troops to castles 6 and 7, not 9 and 10 - which seems an unlikely strategy to take and would lose to the commonsense strategy of putting more troops in 8, 9 and 10. "
11,11,11,11,11,21,21,1,1,1,"I tested it out against all of the strats I thought people might use, and this one won against all of them"
11,11,11,11,11,21,21,1,1,1,"We started by examining several strategies that we expect our opponents will be likely to employ - including: (1)equal distribution strategy across all castles, (2) gradient strategy with highest deployment at castle 10, (3) sacrificing castle 10, with gradient starting at castle 9, (4)sacrificing 10 and 9, with gradient starting at castle 8, (5)sacrificing 10, 9 and 8 with gradient starting at castle 7, (6)equal distribution across all even numbered castles, (7)equal distribution across all castles from 1-7.
We then distributed our soldiers in a fashion that would defeat all of these seemingly reasonable strategies.
Bring it on arch-enemies!"
11,11,11,11,11,21,21,1,1,1,"cuz why not, lol"
11,11,11,11,11,20,25,0,0,0,"I'm attempting to maximize my odds of getting 28 points out of a possible 55, this guaranteeing victory. I'm ceding 8-9-10 thinking most people will throw all their troops that way. I'm also thinking there will be enough people who assign 10 troops per castle, which is why I put 11 troops on the lower numbers."
11,11,11,11,11,19,26,0,0,0,"I enjoyed this week??s Riddler. I attacked it, not mathematically, but by brute force and trial n?? error. I learned that the best strategy would involve trying to win a few key battles (i.e. not all of them), loading to ensure victories in those battles, and that it would entail barely winning in the end; i.e. a small margin of victory.
My first thought was to look at ways to lock up the highest-value castles. Winning the battles for the top 3 castles is 27 points, only 1 short of victory, so my approach involved throwing a lot of soldiers at the top 3, a chunk at a lower-value one, and deploying 1 soldier at the remaining ones (to win battles against zero soldiers). An example of this approach is 0-2-1-1-1-1-1-30-31-32. This wins against many strategies but fails against a simple one of 10-10-10-10-10-10-10-10-10-10. Loading up on one lower-value castle to 11 (to defeat that strategy) leads to too few soldiers at the higher-value castles.
Then I thought of the opposite approach; i.e. concede the battles for the 3 higher-value castles and try to win the remaining 7 (which would yield 28 points, and a win). The best approach I found was 11-11-11-11-11-19-26-0-0-0-. The 26 is necessary to defeat a strategy of deploying ?_ of one??s soldiers (i.e. 25) to each to the top 4 castles, the 11 is to beat the 10x10 strategy, and assigning the remaining 8 soldiers to the 5th highest castle.
This strategy works against almost every strategies, especially the ones that many people likely would choose. It fails against strategies involving loading up on the mid-value castles; e.g. 0-0-1-4-11-20-25-20-15-4. However, as those strategies lose to many other ones I thought people would not choose them."
11,11,11,11,11,19,21,1,2,2,"Made up some simple strategies (10 each, top 3 heavy, bottom 7 only, proportional to points) and this beat all my toy scenarios. Then among those playing for the bottom 7 I wanted to sometimes steal one of the big castles if they leave them wide open, and also weight toward the 6th and 7th castle to hopefully win those against similarly minded players and also win from some people doing something proportional to points but giving up on a few bottom categories or going after 5 columns 20 each."
11,11,11,11,11,16,25,1,1,2,"The name of the game is getting to 28 Victory Points. If you win Castles 1-7, you reach 28, and the remaining castles are useless. Therefore, it makes sense to load heavily on 1-7 while virtually ignoring 8-10. I chose to throw a point or two on the big ones, just in case someone else uses the same strategy, but chooses zero for any of the top three. Also, using this strategy requires more than 10 on every value 1-7, because otherwise it would fail against an even distribution of 10 per castle on tie breakers."
11,11,11,11,11,14,25,2,2,2,"Winning 1-7 or 7-10 wins enough points to win the war. This makes 7 the most important castle. I chose the low points strategy, assuming it would be the least used, and that people that go high, will dump more points on 10. So the plurality of my points go to castle 7 to win it. I put 2 points on 8-10 to win any zeros and ones (for the people throwing a token army at the high numbers). "
11,11,11,11,11,11,11,11,12,0,"I figure everybody will divert too many for castle 10, so I divided up for the remaining"
11,11,11,11,11,11,11,11,11,1,"Hopefully people divide equally, and this maximizes my chances against such players. If they do, I win 9 of 10, and lose castle 10"
11,11,11,11,11,11,11,11,11,1,Assume everyone else will over-allocate to castle 10. Sacrifice and make up points elsewhere.
11,11,11,11,11,11,11,11,11,1,
11,11,11,11,11,11,11,11,10,1,"Overloaded each castle except for 9 & 10. Put one in 10 incase someone else avoided it as a high risk castle, and took it from the 9 as it's a slightly higher risk castle."
11,2,11,11,11,2,12,36,2,2,"I assumed a whole bunch of people smarter than me were spending hours on the mathematically best way to deploy your troops, so I went with an opposite approach: Randomly guess which castles to deploy to, while aiming to gain 28/55 possible victory points. I chose castles 1,3,4,5,7,8 and weighted more heavily towards to castles worth more points. I chose 11 as a minimum so that I couldn't easily lose to someone who just put 10 troops in each castle, and 36 in castle 8 so that someone with the 1-8-9-10 strategy also wouldn't win. I also killed about 10 minutes at work, so I'm pretty happy."
11,1,12,1,15,1,19,19,20,1,Trying to maximize expected value knowing my opponent will be doing the same thing.
11,1,1,1,1,1,1,26,26,31,Go For 28 points
11,1,1,1,1,1,1,25,27,31,"There's 55 points, so you need 28 to win. 10+9+8+1 = 28; that's the fewest number of wins. Guard against people splitting their troops 10 ways by sending 11 to Castle 1, and don't leave anything uncontested by not sending any. That's 11 + 6 = 17, with 83 to spread out between Castles 8 - 10. I didn't overthink this."
11,1,1,1,1,1,1,20,29,34,"There are 55 total points available, so you need 28 points to win, which is why I focused on castles 1, 8, 9, and 10. Winning those four castles gets me exactly 28 points. Assuming an average of 10 soldiers per castle, placing the amount of troops I put in each of these four castles should hopefully let me prevail more often than not and get the 28 necessary points to win the Battle Royale and rule Riddler Nation."
11,0,1,1,1,1,1,25,28,31,"Assume enemy will try to be clever and will have assumed that I am targetting large castles. He will have allocated his troops to win lower castles. So I try to win the point total by reallocating to win castles 8, 9, 10, and 1. In case any of the middle castles (3-7) are ignored, send 1 soldier to prevent a point split and steal the win."
11,0,0,2,3,3,3,26,26,26,"The easiest way to win is to win {1, 8, 9, 10} for 28 v 27.
The strategy needs to counter:
[*] Strategy who tries to win {7,8,9,10} and goes all-25: This means that {8,9,10} must have at least 26 soldiers.
[*] Strategy who splits 10 soldier to all: This means that {1} must have at least 26 soldiers.
This means we have
1 : 11
8 : 26
9 : 26
10 : 26
remaining 11 soldiers
The only enemy for this strategy would be strategy who goes kamikaze and play for {9,10} and goes split-50. The remaining 11 soldiers is split for {4,5,6,7} to make up for the 19 points loss from the kamikaze play."
11,0,0,0,0,0,0,29,29,31,
10,11,12,13,15,17,22,0,0,0,I think people may gravitate toward locking down high numbers.
10,10,20,30,5,5,5,5,5,5,I can capture the lower numbers while everyone else is fighting over the higher numbers.
10,10,11,12,12,13,26,2,2,2,go for the lower castles to get 28 points
10,10,10,15,15,20,20,0,0,0,"I figure castles 1-3 will be lightly deployed while 4-7 will be slightly more defended. But I expect most will focus on the big targets. If I can win castles 1-7 and ""sacrifice"" 8-10, they will only have 27 points. I will have 28 points and still win the war."
10,10,10,11,11,12,12,12,12,0,"In most scenarios, it would beat what I'd plan if I was being lazy."
10,10,10,10,15,20,25,0,0,0,"I know I need 28 pts to win. Taking castles 1-7 gives me 28 pts. Many people will likely put a large # of troops on one or more of the bigger point value castles. Of course, many people will think of this and do the opposite, making my theory kaput. "
10,10,10,10,15,20,25,0,0,0,"If you win castles 1-7 you win the game. This strategy hopes the enemy will waste all or most of its army's to win 8-10, and not be prepared to win any one of the remaining castles."
10,10,10,10,10,10,10,10,10,10,"If my opponent also places ten at each castle, we tie. At worst, I win half the match-ups, and we tie again. But if my opponent places more than ten at one or more castles, chances are I'll win more points. "
10,10,10,10,10,10,10,10,10,10,Uniform Distribution
10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,Maximin
10,10,10,10,10,10,10,10,10,10,Guaranteed to win at most half the points per battle (55) to at least Castles 1-5 (15)
10,10,10,10,10,10,10,10,10,10,Just a wild guess at a strategy that might stand up against the widest array of possible configurations.
10,10,10,10,10,10,10,10,10,10,Not sure
10,10,7,5,7,7,16,11,13,14,"set.seed(154)
poo <- sample(1:10, 100, replace = T)
table(poo)"
10,8,8,13,8,20,30,1,1,1,"There are a maximum of 55 Points available, so 28 is a Winning score. My strategy is to win the first 7 castles to get 28 points, hoping my opponents over commit solders to the last 3 castles. I have also overcommitted to castle 1 as Castle 1,8,9,10 is a winning strategy same applies to castle 4 as 4,7,8,9 is a winning combination. "
10,1,1,1,1,1,1,27,28,29,The plan is to get to the 28 points needed with as few castles as possible while also leaving a guard against other strategies that assign zero soldiers to some castles.
10,0,0,0,0,0,0,30,30,30,"If I win castles 1,8,9,10 I will receive 28 points and my opponent will only receive 27. This is the least number of castles that I need to win in order to beat my opponent. Assuming that I need to win all 4 to have a chance and that my opponent will put very little into winning a single point from castle 1, I will only deploy 10 soldiers. Winning castle 1 is a lynchpin though and I need to win it or my theory fails. All other castles are very important to me and I am able to put 30 soldiers in castles 8, 9, and 10 because castles 2-7 mean nothing to me. I can lose them all and still win if I win 1,8,9,10. "
10,0,0,0,0,0,0,30,30,30,Load up the soldiers on the minimum castles needed to win
10,0,0,0,0,0,0,30,30,30,Tried to choose the fewest number of castles (and in the case of #1' the least likely to be attacked) to attack that would give me a majority of the points.
10,0,0,0,0,0,0,30,30,30,"Deploying hopefully overwhelming force at castles 8 through 10, and a token force to capture 1. It doesn't allow any room for failure, but hopefully will be strong enough at the one point to ensure victory."
9,12,13,14,15,16,17,1,1,2,"I attempt to concede castles 8-10 to win 1-7 in order to scrape by with a total win. I moved one extra soldier from 1 to 10 in case someone puts 1 in the last 3 castles, but otherwise uses the same strategy."
9,11,11,11,11,11,11,23,1,1,"I tried a ton of different variants of a number of strategies, which I ran against each other using python code. I came to a point of realization that any strategy could be beaten by another strategy, but that it would probably be advantageous to choose a strategy which eschewed the top two values completely and beefed up where others would not think to invest but would add up assuming over-investment in the highest values. The particular distribution I chose, while simple, performed the best overall against top-heavy distributions."
9,11,9,11,9,11,9,11,9,11,I thought I'd have the most wins by splitting up my troops almost evenly.
9,10,10,10,10,10,10,10,10,11,"Wanted to get the most possible free points from people who are just skipping out on castles, so I figure just send troops everywhere. You miss all the shots you don't take. Slightly altered the troop deployment for Castle 1 and Castle 10 so as to beat anyone else using this strategy."
9,9,9,11,9,12,9,11,10,11,"The goal of a battle is to get to 28. For simplicity's sake, I ignored ties (likely a fatal omission). So I considered all 36 partitions of 28 into distinct parts less than 11. Each of these partitions represents a winning coalition of castles that will get me to 28. Then I counted how often each castle was in a winning coalition and used that to get a percentage of my troops to send to that castle. After truncating some percentages I had one trooper left over, so I put him in castle 6, which is the highest value part that appears the most. In hindsight this leads to a very uniform distribution of soldiers, which makes me question my methodology, but let's see how it does."
9,9,9,9,9,11,11,11,11,11,I just want to beat the person that deploys them evenly to every castle!
8,10,12,14,16,17,19,2,1,1,"My plan is to try to pick up all of the lesser value castles that others have hopefully ignored. If I can get castles 1-7, then that is enough to win. I've reserved 1-2 extra troops for the remaining castles just in case the opponent's strategy involved abandoning one of those altogether."
8,10,11,11,12,13,14,6,7,8,Somewhat even distribution for people who include lots of low numbers and some slightly higher ones for the people who include near totally even distribution.
8,9,12,14,16,18,20,1,1,1,"For the most part, I gave up on the top 3 value castles (total points 27), to focus on the bottom 7 value castles (total points 28), as I thought most people would commit a lot of resources to the top value castles, and I could win all of the lesser battles. However, I left 1 army at each of the top value castles to combat a similar strategy to mine, except where they left the top castles completely undefended."
8,9,10,12,15,18,25,1,1,1,I figured people would go for the larger numbers.
8,9,10,10,15,22,26,0,0,0,"You do not need the castles worth 10, 9 and 8 to win the battle, so long as you have all the other castles. Therefore why waste men on the castles which are most likely to be attacked."
8,8,10,10,10,10,11,11,11,11,"Strategy A: Concentrate your forces as much as possible, taking more than half the victory points while holding the minimum number of forts required. (forts 10, 9, 8, x). Likely choose fort 1 for x since it's sufficient and unlikely to be hotly contested.
Strategy B: Beat A by focusing on forts 8, 7 ,6, 5, y. Where y is not 9, 10, or x. Since ""Strat A"" will likely put 32 or fewer soldiers in each of forts 8, 9, and 10, Strat B puts 33 soldiers in fort 8. It then picks up 20+ victory points from forts 7, 6, 5, y. Likely to choose fort 2 for y since it's sufficient and probably not hotly contested.
My chosen strategy (C: fully distributed) is likely to beat simple variants of A and B (as well as many other random or semi-random distributions). Since I expect those strategies to be most common, that's what I'm going with.
Basically, this puzzle is much like the Riddler Express puzzle; both come down to the player's estimation of other player's strategies."
8,8,9,9,13,20,30,1,1,1,"with a total of 55 points available, i conceded the higher level castles and focused on the smaller castles to win the majority(spoiler: like how the electoral college went lol)"
8,8,8,8,8,25,30,3,1,1,I thought 7 was most important
8,2,11,12,17,2,21,21,2,2,"55 points are available, common strategies to get 28 may involve attempting to getting a few high scoring or many low scoring castles. 8,7,5,4,3,1 gets 28, with 2 soldiers minimum to each castle in case of uncontested/1 soldier chosen by an opponent, and avoids relying on the highest castles or too many castles"
8,2,4,11,8,14,13,9,14,17,"https://goo.gl/qwoylN
wrote this code to randomly generate 1000 'setups'
then battled each setup against eachother and only returned the 'setup' with the most wins
a general strategy is to try and accumulate 28 points total to guarantee yourself a win. This can be done with a minimum of 4 wins (on the 10,9,8 and 1 point castles)."
8,0,1,1,2,5,11,24,10,38,evolutionary programming
7,13,14,15,16,17,18,0,0,0,Split relatively evenly between less contested castles
7,11,0,14,16,0,23,0,29,0,I want a winning coalition of 28.
7,10,12,14,16,18,20,1,1,1,"I am ""punting"" the top three castles, hoping my opponents waste troops. Therefore, I can win the bottom seven castles to secure victory (28 pts). "
7,9,11,14,16,19,24,0,0,0,"I thought maybe most people would go for the big money, so if I can win the 28 points for the seven smallest castles, that would beat most strategies."
7,8,11,14,17,20,23,0,0,0,"I expect that many others will choose to allocate troops to the highest values (8/9/10). If I can win with just Castles 1-7, it doesn't make sense for me to devote any troops to 8-10 since these troops will usually be completely wasted. The weakness of this strategy is that it gives me an extremely narrow path to victory -- I need all seven castles to win (in the absence of ties from 8-10). Therefore, each is essentially of equal importance to me (losing either 1 or 7 cripples my chances). My troop allocation, then, is more about where other players will choose to allocate troops. Most players will likely choose a proportional strategy, where higher values also have higher troop allocations, so I also have a proportional allocation. After distributing troops proportionally, I am left with two extras. My suspicion is that some players will try to allocate a couple extra troops to 1, thinking that it's an easy way to pick up a win. Because I need castle 1 to win, I have allocated these extra troops to castle 1 to ensure a victory there."
7,8,10,12,15,20,25,1,1,1,"I figured everyone would fight over the top three castles, so I'm making a risky gambit by ignoring them and hoping to sweep the bottom 7."
7,8,9,11,12,13,14,15,5,6,I know that everyone would likely (on average) assign increasing numbers based on the value of the castle. My goal is to be out of 'phase' with those values in order to be 'slightly' higher than the most castles that I can...
7,8,9,10,11,12,13,14,16,0,"I decided to sacrifice points at the highest value castle (10 point castle) and provide myself with a higher probability of winning the remaining castles. I then deployed troops in descending order from castle nine down to castle one.
Jon Snow had to sacrifice Castle Black (or at least it's tenant's ideals) to (hopefully) regain the North, so I was inspired to do the same!"
7,7,15,15,15,16,16,3,3,3,It is the opposite of my other strategy
7,1,1,1,16,19,23,1,30,1,"Focused on 5 castles (1,5,6,7,9) that would yield 28 victory points - just enough to win. No hard and fast rule on choosing castles - just what I thought would be an interesting way of achieving it - didn't want to be too overweight in high value or low value castles so chose a mix. Sent 1 troop to remaining castles (2,3,4,8,10) in case opponent had similar strategy / didn't send troops. Split remainder of troops roughly equivalent to weight of castle in terms of victory points (approximately 3 troops per VP)."
7,0,14,15,10,17,16,18,2,1,STRATEGY! Banking on the little guys!
7,0,0,0,0,0,0,31,31,31,28 or bust.
7,0,0,0,0,0,0,31,31,31,"There are 55 points total to be won between the 2 warlords if all castles are fought for, so whoever gets 28 or more wins in that case. In that case there are 14 ways to get at least 28 points, by winning one of the following specific groups of castles: {10,9,8,7}, {10,9,8,6}, {10,9,8,5}, {10,9,8,4}, {10,9,8,3}, {10,9,8,2}, {10,9,8,1}, {9,8,7,6}, {9,8,7,5}, {9,8,7,4}, {8,7,6,5,4}, {8,7,6,5,3}, {8,7,6,5,2}, {7,6,5,4,3,2,1}. I would like to try to win the fewest number of castles yielding at least 28 points and including a castle that fewer warlords would desire if possible so I can win it with a light deployment and concentrate in the others. From the above, it appears that a 4-castle group of {10,9,8,1} satisfies that, so those are my targets and I have concentrated the soldiers in the higher values castles as desired."
7,0,0,0,0,0,0,31,31,31,Well i was in the armed forces for about 27 years soooooo i think i know what I'm talking about pfffff
7,0,0,0,0,0,0,23,30,40,"There are a total of 55 victory points available, so 28 are needed to win each war. Winning is not necessarily about getting the most victory points -- it's about getting to 28 victory points as often as possible. Thus I dumped almost of my troops in the 8,9, and 10 victory point castles, since winning those three is a total of 27 victory points. Unfortunately, I needed one more victory point, so I put 7 in the 1 victory point castle, hoping that it would be virtually ignored by most people. If one were to distribute troops to castles proportional to their victory points, only (1*(100/55))= 1.818 (which rounds to 2) would be sent there, so I hoped 7 would be enough to take care of that. "
6,12,9,15,15,0,0,21,21,1,Picked favorite numbers.
6,8,11,14,16,18,21,2,2,2,Concentrate on the smaller ones.
6,8,11,11,16,21,21,2,2,2,Focus on the mid-valued castles
6,8,10,14,18,20,24,0,0,0,"win all 7 and lower, sum = 28, higher than 8+9+10."
6,8,10,12,14,24,26,0,0,0,Guess from the bottom assuming most will picking from the top
6,8,9,16,18,21,22,0,0,0,
6,7,9,12,16,21,29,0,0,0,Triage - concentrate forces to get minimum points to win. Abandoned castles worth most points in hopes opponents would concentrate their forces there and I sneakily win with the lesser valued ones.
6,7,8,10,10,21,38,0,0,0,"There's two basic strategies: quantity(1-7) and quality(7-10). In either case, the 7-point castle is the most important one. I spelled out here a quantity strategy. To do so, I applied a Benford's law curve with the highest value on 7. Why Benford's? No reason, I just felt that a curve like that was a good representation of the quantity strategy."
6,7,8,9,10,13,14,15,18,0,"Concede the big prize, deploy those available soldiers to hopefully win the rest!"
6,7,8,9,10,11,12,13,14,10,Worth plus 5 except for the 10 point castle
6,7,8,9,10,10,11,12,13,14,Jdnd
6,6,10,12,14,15,16,17,2,2,Focus on a large group of middle value targets.
6,6,8,15,20,15,10,8,6,6,Concentrate in the middle
6,6,7,11,16,21,26,3,3,1,"Since the high value castles I'm intending to fight somewhere else. By ignoring the place where (I hope) most players are spending their resources, I hope I have the forces to win across the board on 1 through 7. Overspending slightly on the low numbers to counter strategies which try to spend high on one or two low numbers to pick up an edge. Oh, and playing 6's and 1's to come in just over anyone sending forces in round numbers."
6,6,7,8,10,25,35,1,1,1,The ancient chariot race story
6,6,6,32,32,7,11,0,0,0,Win more towers (with lower points each) so that total points compensate for losing highest point towers. Towers 1-7 have 28 of 55 points. Towers 1-5 have 15 of 28 total points among towers 1-7.
6,6,6,11,20,21,21,3,3,3,Let people fight for the big ones.
6,6,6,6,6,7,15,16,16,16,"This deployment is what I think has the highest number of troops that need to be correctly to defeat it, with 56 out of the 100. Additionally, although two other deployments also have that minimum (one troop from 8->5, and from 6->7), this has the fewest possible ways of reaching that number, with two (as opposed to four for the 8->5 and six for 6->7). This is the maximin for the problem, so that's why I'm choosing this for my deployment.
The minimum deployment to beat this is 6 to either castle 4 or 5, 16 to castle 7, and 17 to castles 9 and 10, which gets 2+7+9+10=28 or 2.5+7+9+10=28.5"
6,2,2,15,19,23,30,1,1,1,"Only need 23 to win. Everyone will go for 8-10, so I will go strong for 4,5,6,7 and #1 to get my 23.
"
6,1,8,12,10,1,30,30,1,1,"attempt to win the minimum number of points concentrating on lower values that should be less competitive, leaving 1 troop to pick up any undefended castles"
6,1,1,1,1,1,1,21,21,46,Because the optimal strategy should be to win with the fewest castles
6,0,0,0,0,0,0,26,27,41,
5,15,15,15,15,15,20,0,0,0,"I figured that if I won the bottom 7 castles, the total points (28) would outweigh the top three opportunities for points from Castles 8-10 (27). However, knowing the slim difference, I thought that breaking up the 100 soldiers to each Castle 1-7 would be the best strategy, knowing that if my opponent won Castles 8-10 they couldn't take any other Castle or else I would lose. "
5,12,17,13,13,11,13,5,4,7,"monte carlo simulation of 100,000 placements."
5,10,20,10,5,5,20,10,5,10,Expecting to crush people who put 0 a lot or overdo #10
5,10,10,15,15,20,25,0,0,0,"Assuming most people will try to take at least one of the high-value castles, I send disproportionately high numbers to the lower value castles in an attempt to sweep all 7, and win the war 28-27"
5,9,15,14,16,16,17,0,0,8,Winning all the castles from 1 through 7 gives you a victory no matter if you win or lose the remaining three castles. So using that I weighed my army heavily on the lower portion figuring most people's gut instinct would be to distribute their troops with powers relative to the VP for a castle. I gambled on people giving up on the lower castles so taking those for free points and putting a good number of troops in the middle range where I expected the most resistance to the strategy.
5,9,12,14,16,19,22,1,1,1,"I need to win 28 points- there is no prize for winning all the points. So- rather than go after Castle 9/10 which will be heavily contested, I'll aim for capturing 1 through 7 to earn 28 points. I shouldn't completely neglect the higher castles- if they're undefended I might as well capture them (because they must've stationed their troops elsewhere!)"
5,8,12,15,18,22,5,5,5,5,"This beats the vast majority of strategies that do the following:
focus attention on a subset of castles totaling >=28 points, assigning soldiers proportional to points for castles in the subset, and zero elsewhere."
5,8,8,10,13,16,37,1,1,1,"There's two main strategies: 7 8 9 10, and 1 2 3 4 5 6 7. Castle seven is, then, the most important castle. My strategy seeks to prey upon the first strategy, with a miser's troop in each expensive castle, to try to prey upon the second strategy."
5,7,11,14,17,21,25,0,0,0,"28 points to win. ~3.5 troops per point. {10, 1} are focal, as is strategy: max points-per-castle (ie assign in descending order). Current distribution averages troops-per-point over castles least focal, with kinks at 1, 7 to account for bias towards those strategies. "
5,7,10,14,18,21,25,0,0,0,"I gave up (zero troops) castles 8, 9, and 10 and their total score (27). I then crossed my fingers and hoped that by heavily weighting the bottom end, I could sweep castles 1 through 7 and receive 28 points.
Now that I look at the logic, I see other alternatives.
meh. I'll stick with this one."
5,7,9,12,15,22,30,0,0,0,"calculated that as winning castles 1-7 outscores winning 8-10, so I chose to concede castles 8-10 assuming that is where the majority of people chose to put their soldiers allowing me to put more troops where i assume less people put there soldiers"
5,7,9,12,13,14,18,20,1,1,"Ideally, I want to beat my opponent by as little as possible in as many castles as possible. The obvious plan is to assign many troops to high-value castles, and fewer and fewer for each castle down the road.
I plan to surrender the 10 and 9 pointer, only assigning 1 troop to each on the chance that someone assigns zero. From there, I have a decreasing amount of troops from castle 8 to castle 1. Hopefully I will massively lose the battle for 9 and 10, but win the war for the remaining castles."
5,7,9,11,15,21,25,2,2,3,"Winning the lower 7 gives you more than half the points, so the top 3 values are largely ignored save for a scouting force of 2-3 to prevent a lone scout of the opponent from stealing. Then starting at 7 we deploy in force and curve down from there."
5,7,9,11,12,15,17,19,1,4,Just tried to defeat what I thought might be a few popular strategies.
5,7,8,14,18,23,25,0,0,0,Assuming more people will try and fight for the larger point value castles. By not dedicating any resources to those top 3 point value castles I hope to win the remaining 7 and win each battle with a score of 28-27
5,7,5,7,12,11,15,13,13,12,"I wrote an R script to generate random arrangements of troops, and then I compared them against each other. My program ran very slowly, and this was the best arrangement of troops it came up with."
5,6,10,10,10,10,15,30,2,2,Focus on getting more low-value castles without totally ceding 9 & 10
5,6,7,8,12,13,14,15,20,0,"I sacrificed Castle 10, predicting that my opponent would heavily fortify it. Then I was able to increase the troops at all the other castles."
5,6,7,8,10,14,15,15,15,0,meh
5,6,7,8,9,11,12,13,14,15,This should perform well on average but is far from optimal.
5,6,7,8,9,11,12,13,14,15,"It seemed to me that the optimal strategy would be to take advantage of each weakness in my opponent's line, so something like 10 at each castle makes some sense, but I also wanted to weight the more valuable castles more heavily, so I started with a base of 5, and distributed the remaining 50 across the rest, weighted by castle value."
5,6,7,8,9,11,12,13,14,15,"It's a bit of a weighted average. I first deployed 1-10 soldiers based on point values, one to Castle 1, two to Castle 2, et cetera. That left 45 soldiers. I then distributed the rest evenly, sending 4 more soldiers to each castle, and then sending the last 5 to the top 5 castles. I figure some adversaries will be more top-heavy, and this way I might win some of the middle and lower castles and make it a close contest. This distribution would also beat those who went for a pure average 10-man-per-castle deployment."
5,6,7,8,9,11,12,13,14,15,this will defeat those who use an even distribution and those who give slight preference to higher value castles.
5,6,7,8,9,11,12,13,14,15,"By giving more clout to the larger castles, while still packing a punch with the castles of fewer points, this set up guarantees at least something to walk away with."
5,6,6,15,15,25,25,1,1,1,"thinking im gonna do something like this: 1 on 10 1 on 9 1 on 8... and distrubte 97 more from 7-1...if you can win 7-1 (28 total) over 10-8 (27) total, you are in good shape. so ignoring top 3 and focusing on lower 7-1 is a better strat. if others feel the same as me, it will feel be sweet to perhaps steal one of the ""top 3"" with only one soldier each. "
5,6,4,5,24,20,20,10,3,3,cuz I'm a legend boi go to the outsider website
5,5,15,15,15,15,15,15,0,0,"I don't have to beat everyone, just a lot of people. I figure most people will put a lot of emphasis on castles 9 and 10, so I'm just ignoring those two, in hopes of winning all of 1-7 or 8 and most of 1-7. I was originally gonna distribute evenly between castles, but thought that might be common so I decided to put slightly more than an even distribution in most castles, and leave fewer in 1 and 2, which I could lose if I win 8."
5,5,11,17,4,7,25,10,11,5,Random
5,5,10,20,20,20,20,0,0,0,
5,5,10,10,20,25,25,0,0,0,I assume most would put their soldiers at the higher point castles. I placed mine at the top 7 which would give me the most points.
5,5,10,10,15,15,20,20,0,0,"I figured a lot of people would load up on 9-10 so I focused on lower value, but easier to win (I hope) castles"
5,5,5,10,15,25,35,0,0,0,"If my opponent goes for high value, I could possibly win all the low values, which are collectively more points."
5,5,5,5,20,30,30,0,0,0,"I win 28-27 if I win castles 1-7, figuring most people will go for 8, 9, 10"
5,5,5,5,15,15,15,25,5,5,Al achunte
5,5,5,5,11,12,13,14,15,15,lose the first five but get the rest
5,5,5,5,10,20,2,2,30,16,"I seeded the competition with some sensible strategies, then added other strategies that tended to do well against those, then added others and so on. "
5,5,5,5,10,10,15,25,19,1,"if I can win 1-7, I win. Figured many people will try to spend a lot of resources on 8,9 and 10."
5,5,5,5,10,10,10,15,15,20,Intuitive
5,5,5,5,5,18,25,1,30,1,"To get the 28 points needed to win, you need to win at least 4 castles. I figured many people would devise a strategy to focus on winning 4 or 5 mid-to-high valued castles (meaning they'd split their troops into 4-5 main groups of roughly 20-25 troops) with maybe a few left for smaller valued castles. I, instead, decided to focus on 3 main targets (9, 7, and 6) and try to make up the difference by winning several of the lower-valued castles by sending 5 troops each to castles 1-5 (assuming most people will be willing to sacrifice several of them)."
5,5,5,5,5,8,15,30,15,7,"not very good at game theory, but I wanted something where I could leave enough to clean up on some low value targets if people ended up being too concentrated, focus on some powerful hitters, and not waste too much on folks who wanted to hold hard to the top castle, but catch anyone who does a complete pump fake on ten. Let's see if it works!"
5,5,5,5,5,5,30,30,5,5,Fortune favors the brave!
5,5,5,5,5,5,30,30,5,5,Fortune favors the brave!
5,5,5,5,5,5,27,30,6,7,Updated. Fortune favors the brave!
5,5,5,5,5,5,5,5,5,55,Played 20 test rounds with some friends and this one won the most frequently. Strong chance of winning 10 and at least 18 leftover points (17.5 for the tie). Prevents the 1 and 2 strategy on not desirable numbers.
5,5,0,0,0,0,0,30,30,30,You need a minimum of 4 castles. Want to try to ensure the top three and gives a good shot at lower.
5,2,1,9,4,10,6,20,21,22,"I took 10,000 random troop deployments, and found the winning deployment. I did that 10,000 times, to generate 10,000 good deployments. Then I generated a few million random deployments to test against those 10,000 good deplolyments -- and this one won all 10,000! I cannot understand why this worked, but I'll go for it."
5,1,2,3,4,10,6,7,8,9,
5,1,1,1,1,1,1,26,30,33,"OK, I figured that I need 28 points to win. Thus, taking castles 10, 9, 8, and 1 would suffice. First, I allot one soldier to each castle, should the enemy king omit any. With the remaining 90, I allotted them according to the proportional value of my target castles relative to the required 28 points, calculating this as, approximately 33 additional soldiers to C10, 30 to C9, 26 to C8, and 5 soldiers to C1. Having sent off my army, I prepare a huge victory parade that will have the largest crowds ever, no matter what the park service says."
5,1,1,1,1,1,1,26,30,33,"There are 55 total victory points in the game, therefore a player needs to get 28 points. I assume that my opponent will then choose a strategy that only sends troops to castles to achieve the minimum of 28 points and not send any troops to the other 27 points. Regardless of which strategy he chooses my strategy will beat any strategy that chooses to completely ignore castles."
5,1,1,1,1,1,1,25,29,35,"In order to win the war, I need to get more victory points than my opponent. With 55 total victory points at stake, I need 28 victory points to win. The top three castles are collectively worth 27 (8+9+10) points, so if I win those, I only need to win one more castle to win the war. The vast majority of my soldiers go to castles 8, 9, and 10 since they are the most valuable. I send five troops to castle 1 because I doubt most of my opponents will send many troops to the least valuable castle. I send one soldier to each of the remaining castles (2-7) just in case my opponent neglects to send any troops there. These six soldiers don't hurt me much in other areas. Overall, I think this strategy is the best way to win the race to 28 points. "
5,1,0,11,14,13,14,11,17,14,"Simulation! I created 10,000 possible deployment strategies. For each one, I generated a scalar, u, from Uniform(0.1, 10). Then, generate a set of probabilities, theta, from Dirichlet((sqrt(u), sqrt(u), ..., sqrt(u))). Finally, generate the troop deployment from Multinomial(100, theta). Then, I paired off all possible deployment strategies and found the one that won the most. The top few seemed pretty similar, but might as well go with the best of the best, even if it's probable that a slight change will beat this particular one."
5,0,11,14,16,0,22,32,0,0,Put all soldiers on acombination that adds to 28 and hope the opponent chooses a more even distribution
5,0,10,0,0,0,20,30,35,0,Hope to win majority of points available and no more.
5,0,0,0,14,21,25,1,32,2,Focus on five castles to reach 28 points. Try to disrupt strategies going after low or high castle numbers. Capture uncontested high-value castles.
5,0,0,0,0,0,0,27,31,37,"The three most-valuable castles are worth 27 total, and the 7 least-valuable are worth 28. So making a strong claim to 27 points and a weak claim to the 28th point seems like a good distribution. The vulnerabilities can be exposed, though, by a distribution that weights castles 2-7 as moderately important, and emphasizes a strong attack on one castle in the 8-10 range. I just have to count on my 8-10 range being fortified enough and few enough other people being crazy enough to send 5 soldiers to a castle worth 1 point."
5,0,0,0,0,0,0,25,30,40,Only need 28 total pts to win the battle
4,9,9,13,15,15,17,18,0,0,Concede the top 2 to overload the rest.
4,8,11,14,17,21,25,0,0,0,Needed to get 28 total points to win. Used win probability (number of soldiers allocated vs. the expected distribution) to allocate soldiers in the way that had the highest probability of getting 28 points.
4,8,11,14,17,20,23,1,1,1,"Castles 8, 9, and 10 are likely to receive heavy troop deployments because they are worth the most points. 1 + ... + 10 = 55. You can afford to completely ignore Castles 8, 9 and 10 (Sum: 27) as long as you can guarantee a high probability of winning Castles 1 through 7 (Sum: 28). I determined that having a deployment of better than 3 soldiers per point for Castles 1 through 7 (generally 3p + 2, with the exception of Castle 1) would give me a very good chance of winning them all.
I also wanted to cover my bases a little by sending 1 troop to Castles 8, 9 and 10 in case there was an implicit requirement to deploy a troop to every castle, and also to catch out the other people would would be doing something similar (ie - ignoring the high-end castles to focus on the low-end castles)."
4,8,10,10,15,20,27,2,2,2,Giving up 27 points to hopefully win the remaining 28. I stuck two troops in the big three in case anyone else had a similar idea.
4,7,11,14,18,21,25,0,0,0,I considered having each soldier is fighting for (roughly as it's rounded) 1% of the total points (e.g. 2-4-5-7-9-11-13-15-16-18) but that seemed to be dominated by more concentrated strategies that ignore some castles. So I doubled up on the lower end to try to win all of 1-7 and ignored the top end where I'm hoping most people will put their soldiers
4,7,11,14,18,21,25,0,0,0,Castles 1-7 are worth more than 50% of the points.
4,7,11,14,18,21,25,0,0,0,"Concentrate on lower values, expecting others to overplay on higher values. If I win these, I get just enough to win, no matter what happens at the higher value castles."
4,7,11,14,18,21,25,0,0,0,"I yield the 3 juiciest castles to my opponent, and try to win all 7 remaining castles. I deploy my soldiers to each castle in proportion to its prize (rounding to the nearest integer)."
4,7,11,14,18,21,25,0,0,0,"Get there firstest, with the mostest! Race to 28 pts."
4,7,11,14,18,21,25,0,0,0,"There are 55 available points, the winner needs 28. Working my way up, I allocated my troops according to the relative value of each castle (1/28 = 3.57% = 4 troops to Castle 1; 2/28 = 7.18% = 7 troops to Castle 2; etc.) until I ran out."
4,7,11,14,18,21,25,0,0,0,"Placed a higher than normal interest in the Castles 1-7 and allowed enemy to capture the three highest valued castles. By capturing the weaker castles, I can earn 28 points, while only surrendering 27 points to the enemy. This is under the prediction that my opponent will target the higher valued castles, which many not be the case. I'm an irrational S.O.B."
4,7,11,14,18,21,25,0,0,0,Need 28 points to win. 100/28 = 3.5. People are more likely to over allocate to the top value castles. If I win 1-7 victory castles that makes 28 points. Allocate amongst those by the weighted value of each one.
4,7,11,14,18,21,25,0,0,0,"I can win if I take all castles 1-7, so I allocate all troops to those castles proportional to their value... and hope other people allocate to castles proportionately, but allocate at least some to 8-10."
4,7,11,14,18,21,25,0,0,0,To win castles 1-7 (total Victory points 28)
4,7,11,14,17,21,26,0,0,0,Avoid being beaten by concentrated bets. This strategy is fragile in that it seeks to win with minimum needed (28) while spreading across the most selections to do so. It chooses not to defend the three most valuable castles in an attempt to win all others. Anyone taking a variation of this approach will likely lose close decisive battles for the ultimate margin of victory against me - I hope.
4,7,11,14,17,20,24,1,1,1,"There are 55 points in total, so you need 28 to win. The lower 7 castles offer enough points to win, and it made sense to me to provision them with forces in a manner roughly proportional to their value. The remaining three castles I gave 1 to... because it seemed like a good idea at the time."
4,7,10,15,17,22,25,0,0,0,"realizing I needed 28 points to win, (55/2 rounded up). I originally was going to put my troops on 4 key castles (9,8,7,4). needing 28 points i realized that i had 3.57 troops per point. I was worried though that was putting too much into on basket, so i spread out over the bottom rung (1 through 7) otherwise known as the lowball strategy. "
4,7,10,14,17,21,24,1,1,1,"55 points total. I assume submissions are more likely to load troops on castles 10,9,8, and If I win all castles 1-7, that is sufficient. I allocate 1 to each 10,9,8 so the opponent does not get a free win, and the rest are proportional the that castle's value over the remaining total point value of castles 1-7. (= Value x (100-3) / 28) "
4,7,10,14,17,21,24,1,1,1,"Trying to win just enough castles, but also foil plans that use zero on some large castles."
4,7,10,13,16,19,22,2,3,4,"With 55 possible points, an army needs a total of 28 points to win. Thus, I can sacrifice 27 points. The quickest pathway to do so is to allow my opponent to take the castles worth 10, 9 and 8 points, for a total of 27 points. Therefore, I need to take all other castles in order to win. Thus, I split my troops along the other castles with equal force, assuming that my troops on Castle 1 is 7 times more valuable than my troops on Castle 7, 6 times more powerful than Castle 6, so on and so forth, as I will need 7 times as many troops to dedicate to Castle 7, as it is 7 times more powerful. It was then easy to distribute my troops along those lines, leaving 16 troops. After adding 1 troop to each Castle as extra defense, I added 4 to Castle 10, 3 to Castle 9, and 2 to Castle 8 in order to slightly defend against my own strategy. Knowing I had 9 extra troops, I applied the same logic to my three extra Castles, saying that Each Castle 8 soldier would be 10/8ths as strong as Castle 10. Then, I simply rounded in order to get my troop allocation to be as close as possible to those fractions. "
4,7,9,12,14,16,18,20,0,0,1-8 majority of points
4,6,8,12,16,21,33,0,0,0,The winner needs 28 points so I focused all my resources on towers tha will get me 28 points while avoiding the largest castles that most people would focus on.
4,6,8,10,12,14,17,19,4,5,"Concede the most valuable, try to pick up most of the rest."
4,6,7,9,11,13,15,17,18,0,"A basic strategy could be to deploy an average number of troops to each castle weighted by point value, in which case one would deploy 1.82 troops per point the castle was worth. Given that Castle 10 is the highest profile target, I expect my opponent to commit an above average number of troops to it. I submitted 0 troops to Castle 10 so they would waste any troops they committed to 10 over the average. Instead, I committed an above average number of troops to every other castle, distributing the average number of Castle 10 troops (18) over all the other castles (2 per castle)."
4,5,6,13,13,13,13,13,18,2,"Abandoned first castle since it would probably face strong opposition that could be better distributed elsewhere, then put one guy back to catch anyone who did what I thought to do, Then tried to put roughly equal soldiers at the rest since I'd need them all (besides the last couple that are worth very little)"
4,5,6,8,11,24,42,0,0,0,Trying to win 28-27
4,5,6,7,8,18,22,26,2,2,Thought most people would go after high value targets and I prefer a quantity over quality approach. Sent a few troops at top castles to counter a similar technique.
4,5,6,7,8,10,13,19,28,0,"By trying to determine the optimal strategy, then countering that strategy. And likely failing"
4,5,2,19,18,19,3,4,3,23,"I tested randomly generated deployments against others, and the winners advanced to the next round vs. a newly generated random. the one with the most wins is the submission. I tried to test the winner against all possible deployments, but O^2... it ran all weekend and still hasn't finished haha."
4,4,19,4,19,4,19,4,19,4,"I decided to focus only the odd castles, except for Castle 1. Focusing on four castles and leaving a minimum of 4 in every other castle, that leaves 19 in Castles 3,5,7,9."
4,4,6,3,6,9,25,9,17,17,I ran a competition among me and my friends. Each person submitted 3 solutions. I wrote a python program to pit everyone's submissions against everyone else's. The person with the best board actually created his by creating over a 100 sample boards of his own to pit his trial boards against. This is a modification of his winning submission for our competition.
4,4,4,8,13,17,20,30,0,0,Try to get the minimum 28 to win by focusing on the lower ones.
4,4,4,6,8,13,15,22,24,0,"I thought about different possible strategies, then devised a plan that beat most of those strategies. "
4,4,4,4,12,20,25,25,1,1,"There are 55 total points, so you need to get 28 to win. You probably want to send somebody to every castle in case your opponent skips it, and that does not use up many troops anyway. After that, my goal was to optimize getting to 28 without losing a ton of troops fighting over 9 and 10. If I win 5,6,7,8, that gives me 26, and so I sent a few extra troops to both 2 and 3 so that I can win one of those as well. I also sent a few extra troops to 1 and 4 in case somebody plays heavy on 8, 9,and 10 and sends an extra few troops downstream to pick up a point."
4,4,4,4,4,24,4,26,26,0,Dunno really
4,4,4,4,4,4,34,34,4,4,No specific reason.
4,2,2,15,3,23,4,4,5,38,"To maximize victories, the obvious plan is to ""win by a little, lose by a lot"". I suspect many will do this by concentrating soldiers in castles totaling just over 27 (half), and deploying very few at others. Therefore, I counter by deploying *more than should be enough* at castles totaling 21 points, virtually assuring victory at those, but distributing enough to win at least some of the castles where they may often be 0 to 4 armies. "
4,1,6,1,11,5,16,10,30,16,Picked something resembling a pattern and hoped.
4,1,1,16,21,25,29,1,1,1,
4,1,1,1,1,1,1,30,30,30,"8-10 are 27 points and 1-7 are 28 points. This is to attempt to ensure a win at 8,9,10 and 1. If you bet me at either 8,9 or 10. I will win the bottom 6 castles and win. See if it works."
4,1,1,1,1,1,1,30,30,30,Aim to win the big three and then the smallest one to get exactly half the points plus 1.
4,1,1,1,1,1,1,28,30,32,"Need 28/55 to win, 10+9+8+1 is 28, throw a few in the others in case they realize that and don't put any in 2 through 7."
4,1,1,1,1,1,1,26,30,34,"You need 28 victory points to ensure victory over your opponent. Figured the most efficient way to do this was to hit that number contesting as few castles as possible, so concentrated on the highest value 3 castles and then only needed one more to get 28 so put a few extra in the 1.
I hedged slightly by putting one soldier in each of the other 6 castles in case my opponent chose to not send anyone there.
I distributed the remaining troops based on % of needed victory points per castle. "
4,0,12,0,19,0,30,0,35,0,"Simulation, using mode castle placement, where probability of assigning a soldier to a castle is based on points but ignoring even-numbered castles."
4,0,1,1,5,10,18,19,22,20,"I wrote a short code in Matlab to create 100,000 random strategies to see which won the most. To simplify the code, I allowed the number of troops to be continuous, and then I just rounded off the values of the best one."
4,0,0,0,1,1,1,30,31,32,"Heavy value on 10,9,8, and 1 as you would only have to win those 4 castles to win any battle."
4,0,0,0,0,0,0,32,32,32,"Since I needed to win just over 50% of the possible 55 points I put all my men into the 4 castles that would earn 28 points and conceded the rest to my enemies. I figured this would allow me to concentrate my forces on castles that would guarantee me a victory if I was able to capture them. I know this is a risky (foolish?) strategy because I'm giving my enemies 27 points and failure to capture my 4 target castles would guarantee defeat. I'll be interested to see how my gamble/this game plays out.
""Once more unto the breach"""
4,0,0,0,0,0,0,32,32,32,"All in, just like in Poker - I bet you can tell I lose a lot of money :("
4,0,0,0,0,0,0,32,32,32,"I decided to go all in on a single strategy instead of hedging. You need to conquer a minimum on 4 four castles to win. I am putting all my soldiers into those four castles, so I want at least one of them to be uncontested to free up soldiers for other castles. There is only one such group of four that includes the least contested castle. That is (1, 8, 9, 10). I put the minimum force towards 1 that I thought could gain me victory relatively often."
4,0,0,0,0,0,0,29,32,35,
4,0,0,0,0,0,0,28,32,36,"I want to maximize my victory points, that is, with the least number of soldiers. The higher the castle, the more troops needed to secure a victory point. To win, I need more than half of the total victory points, which is 55 (to win, I need 28). To achieve this, I selected the fewest castles that will allow me to get 28 victory points, that is: castles 10, 9, 8 and 1 (10+9+8+1=28). So I need to distribute 100 soldiers in these 4 castles and let opponent take all other castles. I weighted the victory points to win vs the amount of soldiers, ie castle 10= 10/28*100=35.7, or 36 , castle 9= 9/28*100=32.1 or 32, castle 8= 8/28*100=28.57, or 29-1. and castle 1 is 1/28*100= 3.57 =4. I assumed castle 1 would be uncontested, but ensured at least its value of 4."
4,0,0,0,0,0,0,28,32,36,"To choose a strategy, I have thought about two axes. The first one is the tendency of players to use balanced strategies such as x y x y??_ with x+y =20 as a response to the simplest strategy of 10 10 10 ??_ the second one is to concentrate troops on castles with 28 as value sum (the number needed to win a battle). Each castle i with a number of troops proportional to its value i.e. 100i/28. Using these two hypotheses, castles with highest values would have fewer troops than their values required (using the first axe). The best strategy would be then (using the second axe) to use a set a castle with sum values 28 and with the highest values possible. We end up then with using Castle 10,9,8 and 1 (sum is 28). Proportional allocation would be 36,32,28 and 4 (sum is 100)."
3,11,11,11,11,21,26,2,2,2,"I need to win 28 points to win a war, If someone evenly distributes I beat them. Most other scenarios I win. "
3,9,14,14,10,3,16,14,16,1,"I wanted a quick programming challenge so I put together a small python notebook to create 200,000 different deployments, ran all the match ups, and spit out a winning deployment. I ran the program five times to get five different deployments, matched them all up against each other and picked the one that had the highest average number of points. Not sexy, but it was fun."
3,7,11,14,18,21,26,0,0,0,Point weighted distribution of troops for the lowest 7 ranked castles (which constitute the majority of the points in the game).
3,7,11,14,0,0,0,29,0,36,"I've no real knowledge of game theory so I'd imagine mine is extremely primitive but it was based on the idea of attempting to win exactly enough points to have a majority and not contest the other towers. Obviously there are a variety of combinations that come to the 28 points needed. I then calculated how many troops should go to each tower proportionally based on the value of the tower relative to the target value of 28. As for which of the many combinations adding up to 28 I selected? Well I stook my finger in the air and picked (10, 8, 4, 3, 2, 1), as I felt it had a nice balance of covering the Highest value tower, but also covering a decent spread of other towers."
3,7,10,14,18,21,24,1,1,1,Taking the bottom 7 castles gets you to 28 which the minimum required to win
3,7,10,14,17,21,25,1,1,1,"Modified probability - allocated 1 soldier to each of the highest 3 points, to take advantage of anyone who was leaving those castles undefended. Other than that, allocated based upon win probability."
3,7,10,14,17,21,25,1,1,1,"I went through several iterations, then my brain started hurting trying to anticipate what other players would do. Here the (lame) logic of my deployment: Castles 1-7 are worth 28 points, enough to win. So I proportionally allocate all of my troops over those castles. Except, I send a single troop to each of 8, 9, and 10, in case my opponent fails to send any troops there and I can pick up an easy win. I'm not happy with it, but oh well."
3,7,10,14,17,21,25,1,1,1,I want a shot at each castle in case someone sends 0. Beyond that the bottom 7 castles give a high enough score to win and I proportionately distributed the soldiers by point value.
3,7,10,14,17,21,25,1,1,1,"The goal is to get at least 28 points so I used a simple equation for how many soldiers to put in each castle: 100??x/28 where is x is vp of each castle. I then rounded all of the decimals down and put those number of soldiers in each specific castle. I spent the last three soldiers in the 8,9,and 10 castles to win if there were no soldiers from the other side. There are other combinations of castles which get you 28 points but I chose to compete for castles 1-7 because I thought castles 8-10 would be more competitive so I avoided them."
3,7,10,14,17,21,24,1,1,2,"The simplest strategy is to distribute troops evenly, in proportion to the 55 points available. That yields the average expected value of ~ 1/2 point per troop.
But, we only need to get to 28 to win. I played with a number of strategies where people won only high value castles (25 points on each of castles 1+8+9+10 wins, for instance). But, those strategies leave vulnerable the other castles for picking by a sole attacker.
So, I chose to attack every castle with at least one, but to focus on the lowest seven for a win (1+2+3+4+5+6+7 = 28). I threw one person on castles 8-10, so if they are left undefended I have a chance of picking off a high value one. But I have 97 points distributed on the lowest value seven.
It can be beat, but not by the first several options in game theory.
Like the quick question about 2/3rds of the average guess, there is no theoretical right answer. We have to assess how many people will pick which strategy, and then pick a strategy in response to that."
3,7,0,14,0,21,26,29,0,0,"The strategy in blotto games is always an attempt to win each castle that you win by as few soldiers as possible, while losing the castles you lose by as many as possible, in such a way as to get more than half of the available points (here the target is 28 points). I decided to chose the castles adding up to 28 points that I thought the fewest people would put significant resources in to securing, and roughly allocate my 100 armies to those castles proportionally to their point values, giving up completely on the other castles."
3,6,10,14,18,22,27,0,0,0,I focused on winning exactly 28 points against as many likely strategies as possible.
3,6,10,14,18,21,25,1,1,1,"Aim to win 1-7, conceding 8+"
3,6,10,12,16,21,26,2,2,2,"The idea is that other warlords won't emphasize the low value castles as much as much as I do, and if they do they won't hedge as much on the high value ones. "
3,6,9,12,15,18,21,16,0,0,"There are a total of 55 victory points on offer, so the aim is to win at least 28 points as often as possible. I chose to aim more heavily for castles 1-7, as I thought they are likely to be less often well protected. "
3,6,9,12,15,18,21,5,5,6,"First idea was that troops should be deployed in line with castle value. Second idea was that people will overweight top castles so could easily burn troops there. Third idea was that winning first 7 castles wins 28-27.
Keeping first principle can put 3 troops per point on first 7. Not enough for one troop per point after this. Distribute remaining 16 over last 3 to win over people who write off 8, 9 or 10, so 5 each and 1 left over. Stick this extra one on 10 as that is the highest value castle (not very consistent with earlier but decision where to put last one required)."
3,6,9,12,15,17,20,16,1,1,"You need to achieve 28 points. Most people will try for 10+9+8+1, but I will try for 1+2+3+4+5+6+7. If they steal my 1, I will steal their 8."
3,6,9,12,14,16,18,22,0,0,"I call this the Crowe-Nash deployment strategy, in honor of the nonsensical description of game theory in A Beautiful Mind: https://www.youtube.com/watch?v=LJS7Igvk6ZM .
The idea is that castles 9 and 10 are the blonde girl and everyone will deploy troops heavily to get them. By ignoring them completely, I make a heavy play for the other castles that add up to 36 of the 55 available points."
3,6,9,11,14,16,18,20,1,2,I thought I would need around 34 points to win. Giving up the highest 2 castles means that I have around 36 points and I put around 3 times the number of points in the remaining castles. I then put some in castles 9 and 10 just in case a enough people try giving them up.
3,6,9,3,3,18,3,24,27,4,"Making an evenly balanced effort to win the minimum 28 points needed to win. 84 soldiers (3 per point) committed across 5 target castles.
The remaining 16 are then spread across the remaining castles to pick up easy points from more aggressive strategies which leave some castles unchallenged or send only 1 or 2 soldiers.
If an opponent commits significantly >3 soldiers per point they are targeting, then they aren't targeting enough to win.
If they commit <3 per point they are targeting, I will win out on my targets.
The greatest threats I face are similar strategies, but slightly more aggressive. However, these strategies are likely to suffer more against slightly more random / less calculated strategies, which I am hoping are common enough to protect me.
I also deliberately avoided targeting 10 and 5 as the more salient target castles."
3,6,7,9,11,13,15,17,18,1,"Started with allocating troops according to each castle's fraction of the total points available. Assuming that other smart readers would do the same, and that some readers would focus on castle 10, decided to mostly ignore castle 10. Added 2 to each castle other than 10, then took 1 back from castle 1 and gave it to 10 so it wouldn't be completely uncontested."
3,6,7,9,11,2,27,31,2,2,"I suspect that many strategies will have castles with either 0 or 1 armies and will focus their armies on castles worth about 28 points. Other strategies will distribute their armies more evenly.
If one distributed the 100 armies evenly by the points of the castle, one would get the following: 2, 4, 5, 7, 9, 11, 13, 15, 16, 18. If one distributed the 100 armies according to castle points but focused on just castles worth 28 points, the armies would be some combination zero values and numbers like: 4, 7, 11, 15, 18, 22, 25, 29, 33, 36 (with slight variations due to rounding).
In general, I will win over a given opponent if I tend to win castles by having only slightly more armies than my opponent, but lose castles by having much less than my opponent. Each of my 10 castles will have armies designed to slightly beat one of the following opposing strategies for that castle: an essentially undefended castle (castles 6, 9 & 10), an equally distributed castle (castles (1, 2, 3, 4 & 5), or a focused attack castle (castles 7 & 8). This gives the following values: 3, 6, 7, 9, 11, 2, 27, 31, 2, 2.
"
3,6,6,15,2,5,22,37,2,2,Figured most people would load up 9 and 10. Minimum deployment of 2 to some castles to account for the people who would presumably deploy 0 or 1 to them.
3,6,6,11,11,16,21,26,0,0,"I think most people will stack troops at 9 and 10, so I will try to give those up and win almost all of the other castles"
3,6,1,13,1,21,25,28,1,1,"I decided to put the vast majority of my resources towards securing the 6 castles whose total point value is 28, adequate to win, that I thought fewer other people would be pursuing, while only allocating 1 each to the remaining 4 castles, which I thought others might be trying hard for."
3,5,8,13,21,25,25,0,0,0,"Going for middle ranked castles, and hoping to pick off lower castles for few troops"
3,5,8,13,18,24,29,0,0,0,"My approach is not to win as many points as possible, but to take the absolute minimum points to win the majority of the time. In this game you are forced to make assumptions about the enemy. I'm hoping that castles 8, 9 and 10 will be ""lucrative traps."" With the higher concentration of points, the enemy goes at them with a lot of resources. Instead of trying to take those with my own resources, I will sacrifice those 3 castles to try to pick up the remaining 28 points from the rest of the castles. Essentially, the idea is that the enemy will not have enough resources left for the smaller 7, and I can (hopefully) win them all with small margins."
3,5,8,11,14,16,21,22,0,0,"I am counting on most people to invest heavily in trying to win castles 9 and 10. Therefore, I am ceding those castles to them in hopes that my additional troops can win the remaining castles. This gives me a very narrow margin of victory (I can only lose 8 points in the remaining 8 castles), but against a top-heavy attack, I like my chances. I'm not convinced that this is the best strategy, but I know that in large-scale competitions, it is good to be an outlier (think of the NCAA tournament: pick the favorites, and you are likely to finish in the top 10%, but very unlikely to win the whole competition). "
3,5,8,10,13,1,26,30,2,2,
3,5,7,13,16,19,17,10,7,3,Trying to buy low
3,5,7,11,14,17,20,23,0,0,I predict people will over-deploy on the biggest castles. Thus I can save these troops and use them to win all the other castles. I added a bonus troop to castles 7 and 8 in case someone thinks like I do.
3,5,7,9,11,13,15,17,20,0,Concede castle 10 in hopes that opponents will deploy large troops there.
3,5,7,9,11,13,15,17,19,1,"Punt on Castle 10, try to take the rest."
3,5,7,9,11,13,15,17,19,1,"I thought about splitting my troops roughly equally according to the castles' value. Then I decided to sacrifice Castle 10, which I expect most people to fight over, and get a bit of a boost everywhere else. But I left 1 soldier at Castle 10 in case some people send none there.
By the way it would be cool if you published not just the winner but the entire ranking table so we could all see how we did."
3,5,7,9,11,13,15,17,19,1,x 2 +1
3,5,7,9,11,13,15,17,19,1,"Intuition as a game designer - trying to stay 2 steps ahead. Also, liked the pattern."
3,5,7,9,11,13,15,17,19,1,
3,5,6,10,20,23,30,1,1,1,"There are 55 pts in the game -- if I have 28, the game is done (and I the winner). Thus I hope to win castles 1???7 ... that results in 28 pts. I abandon castles 8, 9, 10 ??? the sum of three totaling 27 pts ??? assuming most players will seek the big numbers first. I do send one (unfortunate) solo man in the case the castle is indeed empty. If so, free pts for me! It is my hope I win out across the bottom 7 castles. Little room for error, but such is the case for most wars."
3,4,11,13,16,21,27,2,2,1,Scoring 1 to 7
3,4,9,10,14,6,11,6,9,18,I generated random troop distributions in numpy and ran tournaments with 25 distributions each. I did tiers of tournaments where the winners of 25 tournaments with random distributions were put in another round of tournaments and so on 4 times.
3,4,8,0,20,0,30,35,0,0,to not deploy forces to the most valuable castles where there would likely be the most competition. Place strength on mid value and low value targets to reach goal of 26
3,4,5,18,22,20,21,2,3,2,
3,4,5,6,7,8,22,22,22,1,"I expect many people to try hard for Castle 10, so no point in gunning for that. I put one there just in case some opponents abandon it entirely. 7, 8, and 9 together will get me most of the way to victory, so I put the bulk of my troops there, and then the remainder on the rest of the castles in diminishing order, to try to pick up the few extra points I would need."
3,4,4,5,6,7,9,11,17,34,Simple weighting based on 1/#of points available.
3,4,4,5,6,0,0,24,26,28,"Started with 10 on each castle (assuming average of random assignment), and then made a ""k-1"" deployment that would beat that deployment, and then a ""k-2"" that would beat the ""k-1"" deployment, etc., out until k-10, then made some minor adjustments."
3,4,4,3,6,11,20,25,11,13,Beat people who oversubscribe to 9 and 10 by stacking 7 and 8 and a reasonable distribution for other castles. But guard against others giving up on 9 and 10 by still putting a chunk there.
3,4,0,0,1,0,2,0,7,83,"I ran a few simulations in MatLab, starting with warlords who randomly assigned their soldiers and then using the most successful warlords of each previous generation to bias the assignments of the next. This is a rough average of some of the winning strategies after a few hundred rounds."
3,3,19,3,3,3,3,21,21,21,"You get more points for winning the top castles than for winning the lesser castles. There are a total of 55 points available. Winning the top three and a fourth castle gets you the win. Because it takes four winning castles, my hunch is that a lot will go 25 to 4 castles. Against those individuals, I am conceding the top three and leaving enough elsewhere to pick up the bottom 7. The potential weakness is somebody who goes stronger than 25 to the top three and hope to pick up a fourth (there is a one in seven shot that I will have picked the right number to go strong against). A strategy of wining the bottom 7 (and conceding the top three) would involve 14 to each castle. By having more than 15 to one of the bottom 7, I hope to pick up the extra."
3,3,13,13,3,13,13,18,3,18,
3,3,10,12,12,15,17,22,3,3,"Don't want extremes, but want enough that if people put 0 i get something. Want high to low numbers for 8-2"
3,3,7,3,3,3,22,24,3,29,hoping that many people put in 1 or 2 troops on the minor castles.
3,3,6,7,3,15,10,30,20,3,
3,3,5,8,8,11,11,14,17,20,"Concentrating on a 4 castle = 27.5 points strategy. There are 9 possible combinations of 4 castle win strategies. Castle 10 appears 7 times in those 9 combinations. Castle 9 appears 6 times... etc down to castle 1 which appears once. I weighted the number of troops per castle by the relative number of times a castle appears on the four castle win strategy.
9 combinations:
10-9-8-1 10-9-7-2 10-9-6-3 10-9-5-4 10-8-7-3 10-8-6-4 10-7-6-5 9-8-7-4 9-8-6-5
normalizes to roughly 2.7 troops per castle per combination "
3,3,5,5,7,7,30,30,5,5,"Conquer the low castles, spam a few higher ones."
3,3,4,6,8,11,15,21,19,10,"I would like to win 7,8,9 and least get a draw in the small ones"
3,3,4,4,4,4,4,35,4,35,
3,3,3,19,3,24,3,3,3,36,"focus on 3 castles, disrupt other strategies, capture uncontested castles"
3,3,3,15,15,15,20,20,3,3,My cat chose for me
3,3,3,13,25,26,27,0,0,0,Ran through a couple of scenarios in a simple model I built in Excel. I liked this one because it leveraged the strategy of keeping the enemy from winning vs the strategy of trying to win.
3,3,3,8,9,20,22,15,12,5,"Because it was required to enter the contest! My decisions were based on the following train of thought:
I decided nothing was worth less than 3, because there are likely a number of people who will do a minimum, I thought i could pick off a number of castles with a slightly higher than expected valued minimum. Of the Remaining 70 soldiers, I randomly assigned 10 of them for three tower bands from 4-6 through 8-10, and then with the twenty remaining soldiers i divided them randomly in groups of ten for the band from 5-8 and 4-7.
This all SOUNDS very academic, it is not. It is random. And yet...i spent like an hour deciding if it was random AND correct. Because damn you, damn you and your making me procrastinate Oliver!! YOU WILL RUE THE DAY! "
3,3,3,4,8,8,13,16,19,23,weighted points and submitted more troops to most valuable but consistently gave troops to even least valuable.
3,3,3,3,11,16,21,34,3,3,"I think a lot of people will want to over-commit to large castles. Some may choose to send everything they have at the top four or five and ignore the rest. Some who think another step further may send one to every castle to win against those who send zero -- opportunity cost of sending one troop isn't that high. So, my strategy is to send 3 to every castle hoping to win all those simple and low-contested battles. Then, I'll mostly ignore castles 9 and 10, assuming that's where most people will focus large amounts of troops, and allocate the rest of my troops in a roughly logrithmic fall-off starting with castle 8. Under the thought that most people will pick numbers that are psychologically pleasing (33 (as one third) or ending in a 5 or a 0), I allocated the rest of my troops starting with 34 troops at castle 8 and falling off from there."
3,3,3,3,7,16,18,21,23,3,"It's worth it to put in at least 1 troop to contest every castle; I put in three to beat the 1 and 2 choosers. Ignore 10, most people will be top-heavy, so it's not worth trying to win there. "
3,3,3,3,7,12,22,22,22,3,"focus on winning 7-9, ignore 1-4 and 10 (unless other person ignores, then win them); numbers are 2 above round numbers (1, 5, 10, 20) to beat people who would one-up those"
3,3,3,3,3,38,3,3,3,38,"focus on 3 castles, disrupt other strategies, capture uncontested castles"
3,3,3,3,3,21,31,31,1,1,"I suspect many people will place great weights on Castles 9 and 10, so I prioritized the next few highest castles. Further, I anticipate many people only awarding one troop to the smaller castles, and some placing two troops to counter that strategy, so I reasoned that placing three troops at Castles 1-5 would let me win some portion of those castles."
3,3,3,3,3,16,20,22,24,3,"I went with a ""barbell"" approach. I invested at least 3 soldiers in every castle because I figure I'll be able to win some castles with low investments. And then I picked four castles for larger investments. I thought people would invest lots of soldiers in castle 10, so I did not invest a lot of soldiers there."
3,3,3,3,3,15,12,40,12,6,"There's nothing but downside to not sending troops to a given castle - if someone else sends troops, you auto-lose. So that's at least 1 per castle. Hoping other people would send 1, I decided to send 2 per. 80 troops left.
General idea from here: pick my battles.
Castle 10 isn't worth fighting seriously for, but at the same time, other people might agree. In theory, my wide deployment will help against people who focus heavily on high numbers. However, I'd need to win all of 1-7 against someone who takes 8, 9, and 10. I send 6 people there - other people who don't focus seriously on 10 might send a token force, but they might recognize that 10 is worth dedicating a slightly stronger one. In which case they might bump their token force up to 5, like I almost did. That's 4 more to 10, 76 troops left.
I now need to fight it out at 7-9. I'm going to aim to beat the uniform distribution, and the 1-7 1 troop, 7-10 semi-equal troops distributions. To beat the uniform distribution, I'm going to have to have at least 11 in 6-9, so let's go ahead and do that, for 4*9=36 soldiers spent, giving us 40 remaining. I'm going to focus on taking 8 and bump it up to 40 soldiers, in hopes that that will take 8 away from more evenly spread distributions, and use the remaining 11 soldiers to bolster my 2s and 11s against people who are taking similar strategies, leaving me with 3. Bump castle 6 with those, I suppose."
3,3,3,3,3,11,16,21,34,3,
3,3,3,3,3,3,3,3,3,73,"""Clearly, I could not choose the wine in front of you.""
Many semi-optimal subsets use proportional allocations of troops. A configuration which slams troops into a single castle and sends 1 to the others beats many of those. 3 troops to almost all castles beats that variant and its 2 troop ""brother"" strategy. "
3,2,7,13,5,15,14,12,14,13,I ran simulations with various random troop deployments and this one came out on top in my limited sample.
3,2,7,12,5,18,10,12,13,18,"Excel random number generator matrix calculation. It was a terrible format for this, but fun to figure out. This combination came out as the most frequent winner in a smaller sample than I wanted to test."
3,2,2,2,2,2,2,28,29,28,"* Compete in the three most valuable castles, worth 27 points in total, and hope to win at least one more victory point by forfeit.
* Counter similar strategies by not going all-in on the top three, hedge by covering the remaining 28 points worth of castles with at least 2 soldiers."
3,2,2,2,1,1,1,31,29,28,
3,1,6,5,10,20,10,20,0,25,I shot for more points
3,1,1,11,13,15,1,21,23,11,"I'd like to pick my battles and win those by a little, and if I'm going to lose, lose by a lot. However, I figure some people will send zero troops to some castles, so I'll send one if it could result in an easy win. Otherwise, I just put an increasing number of troops on the castles I choose to fight for. Some numbers are designed to beat some common strategies like all 10's."
3,0,9,0,0,0,21,31,36,0,It doesnt waste troops on castles that I dont need to win
3,0,4,8,0,0,15,35,35,0,Abandon hopes of Castle 10 and put all the eggs in the basket of 7-9 + 4 or 3 and 1
3,0,0,11,0,0,26,27,30,0,I expected that it would allow me to win multiple battles without wasting troops on likely losses.
3,0,0,0,0,0,0,31,32,34,"To win the most wars you need to get >=28 out of 55 points the most often. Giving 30+ troops to each of Castles 8, 9 and 10 will hopefully guarantee you 27 points. Then 3 troops on Castle 1 hopefully gets you that one last point you need."
3,0,0,0,0,0,0,29,32,36,"There are 55 available points, so the winner needs 28. Castles 8, 9, and 10 provide 29%, 32%, and 36% (respectively) of the 28 points required. I allocated my troops according to their relative importance, and then put the last 3 on Castle 1 to grab my last needed point."
3,0,0,0,0,0,0,29,32,36,
3,0,0,0,0,0,0,29,32,36,"28 wins, proportional to castle value"
3,0,0,0,0,0,0,29,31,37,"There are 55 points available on the board, so only 28 are needed to win, assuming no ties. I could incorporate ties in my strategy, but I'm an engineer, not a mathematician, it's late on a Friday afternoon, and I'm kind of tired. 28 points can be achieved through winning only four castles: 1, 8, 9, and 10. I concentrated all my forces on those four keeps. I split up my army to assail those keeps with a distribution of 3, 29, 31, and 37 warriors, respectively. I chose those numbers because like a good commander I know my troops. And I know my warriors fight best when arranged in groups of Prime Numbers."
2,18,18,18,18,2,2,10,10,2,"It is advantageous to send at least one troop to a castle, since if your opponent sends zero and then you can win all the points instead of half. I send two in case anyone else uses the one soldier strategy. That way my two will beat their one. I could send three or four but at that point I'm wasting troops that could be sent elsewhere.
There are 55 total points which will require 28 to win.
It is my personal opinion that people will either focus on getting the largest numbers to necessary (10, 9, 8 and then 1) to complete 28 points. The smallest numbers necessary (1, 2, 3, 4, 5, 6 and 7) . The best strategy would then be to counteract these two. No matter the strategy, people will focus their forces on the largest numbers they go for. Therefore it is best to stay away from 10 and 7. My strategy will then be to focus 2, 3, 4, 5, 8 and 9 which overshoots 28 points but it is best to have backups. "
2,18,18,2,2,2,18,18,18,2,"I need to win 5 castles and get lucky to win. I'm guessing people will either try and concentrate their forces on a few castles, in which case my 2 soldiers will win some, or they will spread all their troops out, in which case my 18 soldiers will win some."
2,17,5,8,13,21,34,0,0,0,
2,16,6,15,2,11,21,5,1,21,"Adjusted random numbers. We could say there are three basic strategies (focus on a few high-value castles, focus on many low-value castles, and an even attack). Each of these strategies has an effective counter-strategy, but this naturally requires knowing the opponent's deployment. Random numbers are a form of an even attack, but the variance weakens the counter-strategy. The numbers were slightly adjusted to give advantage when facing an opponent who focused on the 10-9-8-7, without changing the outcome of an opponent who spread evenly."
2,12,13,13,2,2,2,2,26,26,"To win the battle you need to win at least 28 VPs. The combination 10,9,2,3,4 yields exactly 28. Castles 9 and 10 are worth the most therefore they need the highest troop allocations, the rest were split between 2,3,4 evenly while leaving 2 in each remaining castle to win them if they are under defended. This strategy beats common strategies such as: 10 in each, 0,0,...0,25,25,25,25 and 2,4,5,7,9,11,13,15,16,18. Other than that it's mostly a guess at how other players will place their armies! "
2,12,2,15,2,18,2,21,2,24,
2,11,11,11,11,11,3,36,2,2,"Need to win 28/55 points. I'll try to do it by going after the castles others are least likely going to seek out. Avoid castle 9, and 10, for example. And trade castle 7 for castles 3 and 4, which are equal in value (although I'm spreading across an additional castle).
Using this strategy, I must win all my castles or the other person wins by default. But trying to win multiple ways is bad - pick a strategy and play it with all your might. Other players that want to win with the 8 in the least number of castles will require 4 castles - they can't do it in 3. Since winning with 4 castles requires at least a 9 or a 10, the 4 castle approach would rarely see that player put anything larger than 25 on the 8. That's the basis for my going above 25 with my 8, but it's too complicated to reveal why I'm going with 36.
If I win, I'll gladly explain my entire strategy, so feel free to reach out to me."
2,10,2,0,20,20,20,20,3,3,"My strategy focuses on the mid value castles and assumes that most people will dump the most soldiers on the high value castles. There are 55 points in total so I need to lock up 28 points to win. Winning castles 5-8 will net me 26 points so I put most of my troops there with a sizeable garrison left at 2 to help secure 28 points. I didn't want to waste resources on 9 and 10, however I left a few soldiers there to keep my enemies honest."
2,8,2,2,16,22,22,22,2,2,seemed like a good way to get 28 of the 55 points.
2,8,2,2,13,18,23,28,2,2,Winning 8-5 and 2 will get 28 points which is enough to win. If someone neglects a castle by placing 1 or less troops I will win that castle high is why I put 2 troops on the other castles.
2,8,2,2,10,18,26,26,3,3,"I wanted to send two troops to each Castle just in case some people ""threw away"" certain castles by sending zero or one troops. Then I competed for the middle castles that would take me to 28 points (8,7,6,5,2). I wanted to send 26 to 8 and 7 to commit heavily to them. I also decided to send 3 to castles 9 and 10 just in case people only sent a few trying to win them. "
2,7,11,14,18,21,25,0,1,1,The race to 28. Trump's America.
2,6,10,14,18,22,26,1,1,0,It seemed like a good idea at the time.
2,6,8,13,18,22,24,3,2,2,"You need 28 points to win, therefore each point is worth 3.5 soldiers. Considering most people that read this site are math and science orientated people and will come up with similar calculation, I stormed the middle (increase the value of 5,6,7) and counter with an attempt to ""steal"" points at the higher end. "
2,6,7,2,20,20,20,20,2,1,"To win, one must achieve 28 points, and so troop deployment reflected this.
Castle 10 was given one soldier, in order to attempt to capture it should an opponent abandon it, but no more as I considered it more likely that opponents would try hard to seize them.
Castle 9 was also given a slightly larger token force for the same reason.
Castle's 5 through 8 were then the lynchpin of my strategy; taking them gave me 26 points, two off victory, and thus I deployed 20 soldiers to each.
I then focused my remaining points on Castle's 2 and 3, with the hope that I would be able to pick up the 2 points necessary at one of those locations.
Nothing fancy, just guesswork."
2,6,2,12,2,18,2,24,2,30,???
2,6,2,2,11,16,21,36,2,2,"Total amount of points available = 55, so we just need to get to 28. I laid out what I thought was a unique way of getting to 28 while still leaving 2 troops on those castles I ""don't need"", as to keep my opponents honest. "
2,5,8,13,20,0,25,27,0,0,get to 28 points
2,5,8,12,17,24,32,0,0,0,"Sum of 1-7 is greater than sum of 8-10, so I'm forgetting those and doing a makeshift exponential function to divvy up the other troops."
2,5,8,11,14,17,20,23,0,0,"I figured everyone else would send too many soldiers to Castles 9 and 10. I sacrificed those benefits with the hope that I would overwhelm them at most of the other 8. If successful I would win 36 victory points, at the cost of 19 victory points.
I then roughly allocated the 100 soldiers eight ways proportionally -- sending 3 soldiers per victory point per castle. This added up to 108, so I took one soldier away from each to return to 100 total soldiers."
2,5,8,11,14,17,20,23,0,0,Ignore castles 9 & 10and try to win everything else
2,5,8,11,13,16,19,22,2,2,The first order solution would be to weight your troops based on 100*(castleNumber)/(totalVP) My solution beats that by giving up the most contentious castles and then using the above equation on the remaining 8. At Least 2 on each castle to beat out other people who abandon castles.
2,5,7,9,11,13,15,17,20,1,"Give up 10, then spread the rest out, generally weighing by point value without actually doing any math. Leave 1 in 10 just in case."
2,5,7,1,12,1,1,19,25,27,"The goal is to win 28 or more points. It basically ""concedes"" 3 castles, allocating only 1 soldier to them*, in order to heavily weight the others.
* The 1 soldier allocations are in case others use a more extreme version of this strategy allocating 0 soldiers to some castles. In that case, the 1 soldier would get a cheap win."
2,5,6,6,21,0,25,0,35,0,You have the chose if you going for castle 10 or not. The problem with going for it is that how hard you try to win it depends on how hard the other person does. My strategy is to fight harder than normal on castle 7 and 9 and try to win by winning most of the lower castles.
2,5,5,5,11,11,17,17,20,7,hoping to get lucky
2,5,5,5,5,10,16,21,26,5,"Punted on Castle 10 on the whole, added 5 incase somebody tried the same. Distributed down the remaining soldiers"
2,5,0,0,0,21,31,41,0,0,give up the high points castles to win the middle castle points with a small attempt to win the bottom two
2,4,10,10,15,15,20,20,2,2,
2,4,9,0,0,0,15,15,25,30,"Assume low value castles may be lightly defended, so try to pick up 3 castles for a total of 15 soldiers. Send most resources to highest value castles, and basically hope the archfiend has wasted troops trying to overwhelm me at 4, 5 and 6,"
2,4,8,11,14,16,19,22,2,2,"I want to pick up free points against any strategy that is is only allocating 0 or 1 point to a castle, and I don't want to fight for the two most valuable castles"
2,4,8,10,20,25,25,0,0,0,"Figured folks would go for castles 8,9,10???but 8+9+10=27, and 1+2+...+7=28. If I win the (presumably underlooked) first seven castles, I win the battle."
2,4,7,13,17,17,18,22,0,0,Trying to stack where others don't.
2,4,7,12,16,19,18,12,7,3,wild guess
2,4,7,9,11,13,19,35,0,0,Give up top two and win everything else
2,4,7,0,16,21,22,26,1,1,"Sounds like an allegory for the Electoral College. The goal isn't to win the most points, but rather to find the most efficient way to 28 points. All troops headed for a losing castle are ""lost votes"" while castles won by more than one troop result in ""wasted votes."" By yielding Castles 9 and 10, you can minimize losses and guarantee wins at castles by assigning a slightly larger amount of troops to castles than what would correlate to the castle's approximate overall value. "
2,4,6,16,20,24,28,0,0,0,Most people I think would go for the castles worth the most points. I chose the opposite route - but who knows?
2,4,6,16,1,21,2,22,5,21,Livin' on a prayer.
2,4,6,15,19,23,28,1,1,1,"Assuming most other ranked the castles by placing a ratio of soldiers to victory points, you would end up with 1=1.8, 2=3.6, 3 =5.5, 4=7.3, 5=9.1, 6=10.9, 7=12.7, 8=14.5, 9 =16.4, 10=18.1. Given that there are ways to attack this strategy, assume most people have developed something more strategic. My plan is to start with 1 soldier on each castle so that you claim any castle where someone else put zero. With the remaining 90 soliders, you want to capture at least 23 victory points assuming no ties, keeping in mind the above ratios. If you went after only castles 4-7 you could get 22 victory points by doubling the standard attack and having 10 soldiers left over plus your original 10. This now gives you 15 on 4, 19 on 5, 23 on 6, 27 on 7 and one the other six. Given the other 10 soldiers are likely wasted on the higher numbers, space them out on castles 1-3 proportionately to get you some time breakers, i.e. 13 total solider (initial 3 plus 10) across 6 VPs means 2=1, 4=2, 6=3 with one left over. He will attack 7 just to give the assist on our most important as losing 4-6 could be made up with our tie-breakers in the 1-3."
2,4,6,13,15,18,18,24,0,0,
2,4,6,10,12,14,16,18,18,0,"arranged in with number of troops directly proportional to points, but gave up on number 10 and allocated them to the higher valued ones. figured even if i put 10 on the lower ones, on average not worth it?"
2,4,6,8,12,14,16,18,20,0,"Assuming most people would go for the largest score castle, I focused on trying to win the majority of the lower scored castles by a relatively uniform deployment. While I'd have to win 1-4 to score as much as the 10, I figure I have to use fewer troops to gain the same number of points. By alloting only 20 to to 1-4, I believe I have a higher probability of winning those with those fewer points than alloting 20 to the 10 castle."
2,4,6,8,11,14,16,18,19,2,"Sacrifice the top castle, and guard against small numbers at 1 and 10. Linear progression between castles 2-9, emphasizing a little stronger the higher castles."
2,4,6,8,11,13,16,18,22,0,"Try to get opponent to waste troops on castle 10, rough proportionality after that"
2,4,6,8,11,13,16,18,20,2,More troops per castle except minimum effort in Castle 10 as I imagine most people will put a large stake in that one.
2,4,6,8,10,35,0,0,0,35,"Guessing that most would shy away from 10 to take 9-8-7-6 and secure the win. I'm trying to take 10 and 6 and then the bottom to slide past them. I only really need 10-6-5-4-3 to win, but it's better to bank the bottom in case of stranger distributions. "
2,4,6,8,10,14,22,28,4,2,Pretty much just intuition. I chose to mostly ignore Castles 9 and 10 in the expectation that everyone else will over-commit troops there in the hope of increasing my chances to win castles 6-8.
2,4,6,8,10,14,17,20,9,10,"I started by distributing 55 troops in proportion to the points available. Recognizing that fighting battles at castles 9 and 10 was likely to get expensive, I then distributed another 36 troops in proportion to points at castles 1-8. Recognizing that I may be conceding castles 9 and 10, I took the remaining 9 troops and added them to 6-8 in hopes of capturing those 21 points to offset the 19 I conceded."
2,4,6,8,10,12,16,21,21,0,Castle 10 will be hotly contested. My foe will deploy many wasted troops there. I will win many other battles.
2,4,6,8,10,12,14,20,24,0,"A small perturbation of troops proportional to reward, forfeiting the largest castle in favour of the next two largest."
2,4,6,8,10,12,14,16,18,10,I feel like castle 10 isn't worth it
2,4,6,8,10,12,14,16,18,10,
2,4,6,8,10,12,14,16,18,10,2 more than the Castle is worth (which only leaves half for Castle 10)
2,4,6,8,10,12,14,16,18,0,"Each point of the castle worth of 2 soldiers but the last one, since the enemy will try to conquer it by all means. "
2,4,6,8,10,10,12,14,16,18,No particular reason
2,4,6,8,9,11,14,17,29,0,Sacrificed the 10 castle as most people will over value this one. With 45 potential points then available an equal distribution of the 100 soldiers would put 2.2 soldiers x value of castle on each castle. I then overweighted the higher value castles some.
2,4,6,8,0,12,14,16,18,20,"I wanted to distribute my soldiers proportionally to each castle value. At two soldiers per castle point, I would need 110 soldiers, so I just dropped #5. Although it reduces my maximum to 52.5, that distribution has the advantage of faring well against very lopsided strategies... I'm guessing :)"
2,4,5,7,11,13,17,19,20,2,"Essentially abandon 10 because it will be largely overshot (win if opponent places 0 or 1 though). From there, place troops according to castle points with some extras on 7-8-9. Will handly beat someone with weighted distribution or too many on 10 which I anticipate will be the most common placements."
2,4,5,7,9,15,17,20,21,0,"I loaded my forces to the mid range castles, figuring that naive opponents would overload castle 10."
2,4,5,7,9,11,13,15,16,18,Closest to the fractional value of each castle.
2,4,5,7,9,11,13,15,16,18,Points were allocated based on the potential points of each castle (100 soldiers/55 potential victory points=1.8 troups per potential VP)
2,4,5,7,9,11,13,15,16,18,"Proportioned based on the Castle's percentage value of overall points available, rounded to the nearest whole number, I'm sure it will be a common answer, but I'm interested in what beats it!"
2,4,5,7,9,11,13,15,16,18,"I used solver in excel to maximize the deployment given the belief that you should put twice as many troops at 2 than 1, and thrice as many at 3 than 1, and so fourth (aha get it?). Lets see if machine can defeat man."
2,4,5,7,9,11,13,15,16,18,Defend each castle with a number of troops equal to total troops scaled to ratio of castle value to total available points.
2,4,5,7,9,11,13,15,16,18,"There are a total of 55 points, so I divided the forces based on an equal number of troops for each point. Castle 1 is worth 1/55 of the troops, castle 2 is worth 2/55 of the troops and so forth."
2,4,5,7,9,11,13,15,16,18,"Each castle is worth a certain percentage of the total victory points. I put as many troops there that equal that percentage. If my rival were to put extra troops in any castle, I will get the points for the other castles he left out. If my rival puts the same troops in any single castle, we split the points.
e.g. the 10 point castle is worth 18.18% of total victory points (10/55) so I put 18 troops there. "
2,4,5,7,9,11,13,15,16,18,Total of 100 troops. The sum of the numbers 1 to 10 is 55. The ratio between troops and total points is 1.8181818181... and so I allocated that many soldiers (rounded to the nearest integer) per point per castle. This should ensure that my troop allocation accurately reflects the potential value of each castle.
2,4,5,7,9,11,13,15,16,18,"Take all the Castle points (55) and divide 100 by that number (1.8181818...) to get the estimated troops per castle. Multiply that number by the points for that castle to get the number of soldiers for that castle. This way you distribute the same number of soldiers for the first 4 castles as for the last castle, which are worth the same amount of points. Because you have to round, you may not get exactly the same answer, but it should be close. So, you can lose castle 10, as long as you get castles 1-4 to replace the victory points. So you can even lose the top 3 castles, if you win the other 7. Or you can win the top 3 castles and the lowest castle and lose the others. As long as you win some combination of castles that equal 28 victory points, you win, and you don't care which castles those are."
2,4,5,7,9,11,13,15,16,18,multiplied each tower number by (100/55). (55 is sum of tower numbers). Then rounded each number to nearest integer
2,4,5,7,9,11,13,15,16,18,Assigned based on weighted point value of each castle.
2,4,5,7,9,11,13,15,16,18,"Ran 4377 simulations. This placement of troops should win ~80% of the time. The most I found. This is also the placement of troops that equates to the value of each castle. ie C1 get your 2% of the available points, so assign 2% of your troops to it."
2,4,5,7,9,11,13,15,16,18,divide the 100 soldiers by the total # of points 55. allocate soldiers then based on this rate x # of points for the castle
2,4,5,7,9,11,13,15,16,18,Distribution of soldiers based on share of total points each castle is worth.
2,4,5,7,9,11,13,15,16,18,The 100 soldiers are allocated in proportion to the 55 points available.
2,4,5,7,9,11,13,15,16,18,Expected value and some rounding.
2,4,5,7,9,11,13,15,16,18,A proportional distribution forces any opponent to spend the most resources at a rate of 55 soldiers for the majority no matter how it is placed.
2,4,5,7,9,11,13,15,16,18,"55 points are available. I used a percentage of points for each castle compared to the total. So Castle 10 gets 10/55, or 18% of the soldiers."
2,4,5,7,9,11,13,15,16,18,I deployed the troops in proportion to the point values of the castle
2,4,5,7,9,11,13,15,16,18,Percentage of castle's points to total number of points (i.e. 10/55=.1818) equals percentage of soldiers that go to that castle (.1818*100=18 soldiers go the castle 10).
2,4,5,7,9,11,13,15,16,18,"I used the Huntington-Hill method of apportionment, treating the castles as if they were states, as if their point values were residents, and as if the House had 100 Representatives."
2,4,5,7,9,11,13,15,16,18,Proportional to castle worth
2,4,5,7,9,11,13,15,16,18,It's directly proportional to the points each castle is worth.
2,4,5,7,9,11,13,15,16,18,55/100 * number of units to win
2,4,5,7,9,11,13,15,16,18,55/100 * number of units to win
2,4,5,7,9,11,13,15,16,18,"I took the percentage of what each castle contributes towards the goal of 28 points, then used that to come up with an amount for each castle. So Castle 10 gets you 35.7% of the way to the 28 points needed - divided by two and rounded gives you 18. After rounding I had one left over so I threw it in Castle 8. "
2,4,5,7,9,11,13,15,16,18,Simply proportional to value
2,4,5,7,9,11,13,15,16,18,Troops at i = 100 * [Points at i] / [Total Points]
2,4,5,7,9,11,13,15,16,18,Weighted average of what each castle is worth.
2,4,5,7,9,11,13,15,16,18,Close to uniform per point (100 troops into 55 points = 1.8 troops per point).
2,4,5,7,9,11,13,15,16,18,"First of all there's the what I think of as the Electoral College approach.
Well, it's topical.
There are 55 total points available. If one gets 28 he wins. If you put 3 on castle 1, 29 on 8, 32 on 9, and 36 on 10 you'll get there. You're allocating soldiers by castle points.
But if you lose even the 1 castle, you lose.
Also, this strategy can be defeated by only 10 soldiers. 4 on castle 1, and 1 each on 2-7.
But it would beat my strategy.
I went for efficiency. 1.8181... soldiers are available per point. If you allocate 14 soldiers to castle 8 there's virtually no waste of soldiers versus points. Approximately zero. It's efficient.
But you have one soldier left. And where do you put him?
This is where it gets interesting. The best are, If I'm right, castles 10, 3, and 8.
In order, you're wasting 1 soldier for.555.... points for castle 10, or .6 soldiers for about 1 point for castle 3 and 8.
But people like whole numbers up to six. Then they go for even numbers and multiples of 5. So adding the soldier to the 10 castle is probably not going to help.
Also it's the least return.
Between castles 3 and 8 I already have 5 soldiers attacking castle 3. But only 14 attacking castle 8. So I added the extra soldier there and thought that the worst that could happen is that I lose castle 3 and split castle 8 for a net gain of +1."
2,4,5,7,9,11,13,15,16,18,
2,4,5,7,9,11,13,15,16,18,"I used each castles worth out of 55 total points (1/55,2/55,3/55)"
2,4,5,7,9,11,13,15,16,18,Big ballz
2,4,5,7,9,11,13,15,16,18,"Efficiency.
There are 1.8181... soldiers available per castle point.
And while the rules don't say that you can't cut up and part out soldiers, I'm assuming that you can't send .6 of one here and .4 there.
So with my distribution except using 14 instead of 15 on castle 8, there is, on average, no waste. You waste (to one digit) .2 on 1, .4 on 2, .2 on 6, and .4 on 7.
Then you underspend .4 on 3, .2 on 4, .4 on 8, and.2 on 9.
That's even. And only 99 soldiers.
But for a minute let's consider the Electoral College approach. (Hey, it's topical.) There are 55 castle points available. 28 wins. So 3 on 1, 29 on 8, 32, on 9, and 36 on 10 is the most efficient to win 28 points.
And beats my approach.
But, interestingly, loses to only 10 soldiers. 4 on castle 1 and 1 soldier each for castles 2-7. The EC approach has to win EVERY castle it attacks. With even a tie it loses.
So my question is what to do with my last lonely soldier? I've already overspent on castles 1,2,6, and 7. Those are out. I've underspent the same largest amount, .4, on castles 3 and 8. So adding my last soldier to one of those gives me the best benefit. But which one?
So now we get to the what is everyone else doing and how do people think territory.
For 1-5 they use the number they need. For about 6-15 they use even numbers and multiples of 5. Someone might want 12 or 15 of something. Never 13. Or 17.
Because you're getting into 15 or 20 territory now.
And no one anywhere ever ordered or bought 29 of anything.
So adding to castle 3 moves me from 5-6. I'll take the probable draw because moving castle 8 to 15 soldiers even if I draw is more valuable.
And moving castle 9 or 10 from 16 and 18 probably won't make a difference. "
2,4,5,7,9,11,13,14,16,19,"Soldiers divided by the available points = (100/55) 1.81
Soldiers were then assigned to castles based on the value of the castle. (99 Soldiers)
(One extra soldier was applied to Castle 10. In case someone chooses the same strategy, then you split the points, so it is not worth applying it to any other than the most valuable one.)
I'm not a big mathematician but i like to try, and i appreciate your riddles :)"
2,4,5,7,9,11,13,14,16,19,"I attempted to pick values equivalent to the victories points value in making up 28 victory points. For example, winning castle 10 gives you 34.7% of the victory points needed to win a majority. The proportional percentage of this is about 18%. (I chose 19 because my math rounding got me 99 soldiers in battle.)"
2,4,5,7,9,11,13,14,16,16,Determine each castle's percentage of the total points then assigned that many units then added the remaining unit to the most valuable castle.
2,4,5,5,10,10,20,40,4,0,Really don't know
2,4,5,5,3,3,4,4,32,38,"The deployment is based on a few key principles:
1. Have a set minimum number of troops for each castle
It pays to leave a few troops in each castle, even the lower valued ones. If an opponent leaves a castle empty (and it is likely that a decent chunk of opponents will do so in order to focus on higher-valued castles) then you can gain substantial points for a very small cost. The minimum is largely trial and error; I ended up with 3 as this was a good compromise between saving troops for larger castles and not getting easily defeated. I did not apply this minimum to Castle 1 as it would not be economic to do so - Castle 1 is worth so little that deploying more than 2 troops to it can quickly become a waste.
2. Fight hard for Castles 9 and 10
This should seem obvious, but if you can win both of these it makes your work a lot easier. On the other hand, if an opponent manages to beat you in these then they have barely any troops left, and thanks to your minimum you have a good chance of winning most of the rest.
2. Pay more attention to Castles 1-4 then 5-6
You can win Castles 1-4 fairly cheaply and get an easy 10 points. If you also win Castles 9 and 10 then you have easily won the war. On the other hand, if an opponent also focuses on 1-4, then the minimum should give you at least a few points in the middle. Combine with #2 and you have a decent shot.
3. Don't try to remain undefeated
No deployment is undefeatable. My deployment, for instance, loses to putting 10 soldiers in each castle, and also to the deployment 1,3,5,7,9,11,13,15,17,19 (in Castles 1-10 respectively) which could be considered the ""mean"" deployment. Other submitters are unlikely to go with these deployments as they are overall quite weak - they are more likely to go with stronger options which nonetheless have vulnerabilities. One likely mistake is to heavily weight 3 Castles instead of 2 - you will not be able to put enough soldiers in each to beat a strong Castle 9 or 10, effectively wasting a larger amount of soldiers while also leaving less for the smaller castles. Remember, any path to victory requires at least 4 castles.
Through these principles and trial and error, I found this deployment to be the most successful, beating 22 other hypothetical deployments."
2,4,4,8,9,10,12,15,17,19,"Not knowing how my fellow Riddler readers will attack this problem, I went for the optimal strategy against a random distribution. The ideal ratio of troops each to point is 1.8181... . I believe my distribution comes as close as possible to achieving that, as measured by the average of castle-by-castle ratios. We'll see how it goes!"
2,4,4,4,4,10,18,20,22,12,"I've played this before! In the past I've seen that 4 is usually enough to contest the lower castles, while committing too much to castle 10 is often a mistake, especially among groups still new to the game."
2,4,2,3,14,21,1,30,21,2,"The best result from a somewhat improved algorithm. The old code is at http://pastebin.com/zT2PifR4, while the new code is at http://pastebin.com/Q3UYquxr."
2,3,11,2,15,18,21,1,26,1,"I wanted a slightly random option that would defeat obvious choices like an even distribution (10 to each of 10 castles). Or going for all the top castles (25 each on 10, 9, 8, x) which I would prevent by winning castle 9. I was initially going to go for all of the lower castles, (7 and below) but that would lose whenever someone spent big on 10, 9, 8, and a random one. My goal here is to win castle 9 almost always, 7 almost always, and usually 6, 5, and 3 without conceding any other castles. Winning these castles would provide 30 points and a win. Losing one of them could be made up if someone sent zero soldiers to castles to some of the other castles. If someone else tried a similar strategy while sending 0 to any castle (especially 8 or 10), that would be a victory for me and a large bonus. "
2,3,8,2,2,0,17,26,38,2,I'm ceding ten because others will deploy a lot of troops there--hopefully many will be wasted. Trying to get the next three plus Castle 3 which would just barely be a win. Also hoping to sneak in on some places where the enemy might have put in 0 or 1.
2,3,7,9,13,18,20,24,2,2,"We decided to sacrifice the 9/10, hope that most people will waste too many armies there and we could win the rest."
2,3,7,9,11,13,15,18,21,1,Sacrifice 10 and load up on the rest..look at soldiers per point and give about equal resources per that metric
2,3,6,11,16,26,33,1,1,1,"-Worth leaving 1 point at every castle, in case opponent leaves 0
-People will waste troops on high point castles
-Many people will use round numbers (10, 15, 20), so putting 1 extra point will mean a few free victories.
-The goal isn't to beat the *best* players, but to beat the *most*, and this strat should be decent against a lot of comps"
2,3,6,6,11,16,22,32,1,1,"Don't deploy any substantial troops to 9 or 10; let the others waste troops on them. Focus on 1-8; can still win if lose castle 8, so multiple win conditions. Deploy numbers like 16 and 11 to hurdle opponents who go for multiples of 5. "
2,3,5,10,10,10,10,20,10,10,I figure most people will go heavy on the top two.
2,3,5,8,13,21,13,21,13,1,Attempt to pick a different strategy than most people
2,3,5,8,12,17,23,30,0,0,
2,3,5,7,10,11,13,14,16,19,"Based on points and number of soldiers, you want about 1.8*points value at each castle. I then rounded to the closest whole number."
2,3,5,7,9,15,17,19,21,2,"Started with distributing by value. 10/55= 18.2% so should have 18 soldiers. Then I figured others will use this strategy so I should take advantage of it. I also wanted to take advantage of those who put too much value on castle 10, but also take advantage of anyone who sends only one soldier."
2,3,5,7,9,11,13,15,17,18,"Figured out the total number of points, and allocated troops based upon each Castle's portion."
2,3,5,7,9,11,12,15,17,19,This is the Banzhaf Power Index value (rounded to the nearest whole number) for each castle. The BPI represents the chance that each castle will be the tipping point that produces victory (number of scenarios in which changing that castle's ownership would change the result divided by total number of scenarios).
2,3,5,7,9,11,12,14,17,20,Math
2,3,5,7,9,11,12,14,16,21,Simulated random troop deployment (with weighted probabilities of being deployed to each castle) multiple times and this deployment came out as having the highest chance of winning.
2,3,5,7,8,13,14,15,16,17,Weighted average of strategies that try to win 28 points.
2,3,5,7,8,10,12,15,18,20,Logic and skill.
2,3,5,6,7,9,10,30,13,15,
2,3,4,5,11,20,21,30,2,2,"I chose this deployment to basically concede the top two while attempting to score in the lower Castles. I would also beat other people using this strategy because I would take the top two Castles and by varieng the spacing for the others, hopefully tie or score on the lower ones."
2,3,4,5,7,11,20,33,15,0,
2,3,4,5,7,9,11,15,19,25,"I ran a simplistic genetic algorithm, which naturally did not converge but 'floated' around strategies with roughly exponentially increasing men per castle. Intuitively that feels fine, and there is no time to further investigation, as the battle rages on! Must fight now! Or fail. So... I approximated a few of the solutions with a rounded exponential distribution (rate~1.31) and ordered the men to march to their castles. Glory to the winner, honour to the vanquished."
2,3,4,5,6,14,15,16,17,18,Attempting to allocate 1 more than average to each castle.
2,3,4,5,6,14,15,16,17,18,Seemed like a reasonable distribution for exploiting those who go somewhat top-heavy (though admittedly not those who go 25-25-25-25 or 20-20-20-20-20 at the top) as well as those who go for a near-balanced approach.
2,3,3,13,21,22,23,7,3,3,na
2,3,3,5,6,17,18,21,22,3,"Forfeit the obvious top battle but leave some stray troops in case the opponents think the same way. (I would have loved to run some simulations with genetic algorithms, but the weekends are simple a bad time.)"
2,3,3,4,3,3,3,70,3,6,"It takes 28 points to win. Hope that many other strategies will focus on four-tower combinations like 1-8-9-10 and 5-6-8-9. Placing the majority of my army at castle 8 will disrupt many of those combinations.
Having placed 20+ soldiers at their four targets, my opponent cannot control the remaining towers. Placing 3 of my soldiers at each should be enough to win most of them. If they don't focus on castle 10, they still might increase their allocation there to 5, so bump mine up to 6.
Castle 1 just isn't worth defending, so I removed 1 soldier. The marginal value of placing soldier #71 at castle 8 seemed pretty small, so I placed this guy where the point value was just starting to feel worth the expense."
2,3,3,3,5,5,7,7,15,50,
2,3,2,13,13,21,2,21,21,2,"I experimented with a few different reasonable placements (and several obvious options like 10 on all, 11 on top 9, 20 on top 5, etc) and this successfully defeated them all. It's a good balance of obvious and contrarian- so a good game theory approach. We'll see how it goes. "
2,3,2,8,3,2,26,25,26,3,"My hope was to get enough points to win (28) through a combination of undervalued castles. I'm assuming people will overfocus on castle 10 (though I put 3 soldiers on it for those who significantly underfocus on it) and overloaded castles 4/7/8/9 to get to 28 points. In case someone went for 25 each on the top 4 castles, I tried to aim for enough to beat out 25 on two of the castles (7/9) and enough to tie and defeat elsewhere on castle 8. On the remaining castles, I tried to put one more soldier than I expected someone strapped for soldiers might put on that castle. Fun Riddler this week. I look forward to seeing if I should pursue a life of warfare or stick to my current day job. "
2,3,2,6,12,3,16,21,31,4,"I wanted to get a leg up on people who chose to deploy based on allocation by overloading castles 9, 8, 7, and 5. I thought that some might try to capture the top few castles and give up on the bottom castles so I would only need to steal a top three castle to more or less lock up the battle. I also thought that many would send the largest army to the 10 castle. I sacrificed castle 10 to shore up other armies hoping that opponents would either overload castle 10 or would send even fewer than I did (unlikely). I also tried to beat round numbers based on people's affinity for them. I made a few quirky adjustments (like sending 3 to castle 2 but only 2 to castle 3) just for the sake of randomness."
2,3,2,3,0,11,12,21,23,23,I wanted to maximize my chances at the top end while also giving myself a chance to pick up a few low numbers if anyone decided to completely punt those castles
2,2,18,18,2,18,18,18,2,2,"The total point value of the castles is 55, so a minimum of 28 points is needed to win. I then picked the castles that added up to 28 points or more, while not choosing the more obvious targets (e.g. Castle 10). For the castles that I did not try to capture, I nevertheless assigned 2 troops to each one. Why? Well, if my opponent decided not to try to capture a certain castle at all, 1 troop would be enough to take it. However, it is likely that others are thinking the same thing, so I put 2 for each instead of 1. (Obviously, this number could keep increasing, but 2 was the most I felt I could spare without hurting my chances in my prioritized castles.)"
2,2,14,16,2,18,20,22,2,2,"Focus on getting five medium-sized castles to get just enough to win, then give 2 to the rest (enough to win if the opponent has allocated only 1)"
2,2,11,11,11,11,12,26,12,2,"This beats the 10 on everything spread, also trying to abandon the first two slots with just 1 solider gives me 3 free points. Those who abandon the top slot for a lower spread also gives me the a free 10. Fighting hard on 8 because the 10-9-8-1 strategy needs the 8 to win and dividing it up 25 on each makes the most sense."
2,2,11,11,11,2,2,26,31,2,"Goal is to win 8 and 9 (cede 10 as most valuable) hoping lots of troops end up there, and 3-5 (to get total to 29 points, 11 each to beat any 10s), put 2 troops at least on everything to cover anyone trying to scrimp there (and to cover anyone trying to beat anyone who would just put 1)."
2,2,10,17,5,19,3,1,39,2,"Kind of random, didn't want to put 0 troops anywhere. Hoping that others over think their strategies."
2,2,10,14,16,22,2,28,2,2,My strategy beats the ponderated troop deployment and gain advantage over strategies that let go some castles
2,2,8,12,14,16,18,20,3,5,"Give up the big castles to win the medium ones, but try to keep enough troops in the big ones to beat other people doing the same thing"
2,2,8,8,18,19,19,20,2,2,Avoid the top - win the rest
2,2,6,12,2,18,24,30,2,2,"Since there are 55 points possible, I set out to try to win 28 points. I picked 5 castles that could get me those points and sent almost everything to those (sending 2 each to the others as a precaution against someone else using the same strategy)."
2,2,6,11,16,2,2,26,2,31,
2,2,6,11,12,14,21,30,1,1,I wanted to protect from the person who did all 10's. I figured that most people will try to go for castle's 9 and 10. I wanted some on 9 and 10 because if a person goes for just castles 1-7 which is a winning strategy.
2,2,6,6,6,26,26,26,0,0,Assume most people will concentrate on castles 9 and 10. Try to pick up enough points elsewhere.
2,2,6,6,2,20,20,20,20,2,na
2,2,5,13,2,2,18,24,30,2,To defeat people with similar strategies to mine
2,2,4,11,12,12,12,15,15,15,top heavy with small amounts at the bottom in case opponent put no troops there.
2,2,4,7,12,16,17,1,1,38,"Only need to get 28 pts to win. If you can predict where most other people will play, then you can avoid putting soldiers there to minimize your losses. Main goal is 10 + 7 + 6 + 5. If loss of 10, then possibly get 4 + 3 + 2 + 1 or some other draws. Can't plan for everything - I'm sure there are others who predict people will put in 10 and they'll move elsewhere. But if you don't get any of 8/9/10, you need to get everything else. Average strategy would put 14-15 in spots. So trying to hedge against that strategy + 10s across. And aside from those, no idea what others would try, its hard to plan to beat the largest % of people.
I guess you can also think in terms of pts per soldier."
2,2,4,6,10,16,26,30,2,2,"a true commander never gives away his secrets.
ok, fine. i figure that a combination of 1 through 8 will be a majority of points and would secure a win. (1+2+3+4+5+6+7+8 > 10+9)
can't leave the two large castles under-defended though, in case someone tries a sneaky strategy. so send at least 2 to each castle.
use a fibonacci sequence to determine the rest. for the 3rd, send 1st + 2nd. for the 4th, send 2nd + 3rd, etc. if over 100 in total, deduct from the 8th."
2,2,4,5,7,10,10,15,20,25,"Basically set the soldiers for 10, 9, 8. Afterwards distributed the rest in decreasing amounts to 7 to 1. Numbers had to add up and the higher the amount of soldiers for 7-5 the better."
2,2,4,5,7,10,10,15,20,25,"Basically set the soldiers for 10, 9, 8. Afterwards distributed the rest in decreasing amounts to 7 to 1. Numbers had to add up and the higher the amount of soldiers for 7-5 the better."
2,2,4,5,7,10,10,15,20,25,"Basically set the soldiers for 10, 9, 8. Afterwards distributed the rest in decreasing amounts to 7 to 1. Numbers had to add up and the higher the amount of soldiers for 7-5 the better."
2,2,4,4,15,21,22,24,3,3,"I suspect most people will fight heavily for the top two castles. I have decided to punt on these and instead focus heavily on the middle group which is still worth a lot of point, but can probably be secured with fewer troops to each. I did however send a few troops to the top and bottom, in case an enemy decided to ignore them completely, either giving up on them entirely in the case of 9 and 10, or deciding they were not worth the effort in the case of 1 and 2. "
2,2,3,6,8,11,2,2,27,37,"I think people will overemphasize 6-9, so I'm punting 7 and 8 and trying to win the rest."
2,2,3,4,8,14,17,20,29,1,This strategy works well against a random monotonically increasing strategy.
2,2,3,4,7,10,14,22,35,1,Fibonacci series + 1 shifted to account for people overvaluing 10
2,2,3,4,6,8,11,15,21,28,I assumed that an exponential decay function would describe the best distribution. I wrote a computer script that tried different distributions and select one that was successful.
2,2,3,4,5,15,17,23,27,2,"I initially tried to optimize the number of points per soldier, then readjusted to favor mid to high point castles while maintaining a minimum number of soldiers at every castle."
2,2,3,3,13,21,26,28,1,1,"I expect many people to heavily weight castles 9 and 10. I am going to sacrifice them, except to those who completely ignore them. I also expect many people will also recognize that a main focus will be on the highest castles and will only to send a few troops to the lower number castles. I have 2 and 3 troops to lower castles because I feel like several people will send 1 troop as they anticipate others to ignore these castles.
My strategy is less about winning individual battles with other distributions and more about winning the war; I'm focusing most of my efforts on the middle numbered castles, with a bias towards the higher castles. I feel like castles 7 and 8 will be the most influential, since they are both part of a ""top down"" or ""bottom up"" strategy. As such, I made sure that both of these castles had many troops. I feel like this strategy is robust against several strategies, hence the appeal"
2,2,2,22,2,2,22,22,22,2,"I identified the minimum number of castles to reach 28 points (4), and placed the maximum number of troops I could while still being able to place 2 everywhere else. I chose 2 everywhere else so that I could win others if someone else decided to put 0 or 1 there, which would make up for losing some of the others."
2,2,2,21,5,3,21,21,21,2,"There needs to be a focus on at least four of the castles in order to enough points to win (28). Castle 10 is the most likely to draw large numbers of troops due to its high value, so attacking 9, 8, and 7 will hopefully guarantee some values. The rest of the castles attracted low numbers in the case of an opponent simply not sending any troops or only sending one to pick up any uncontested castles."
2,2,2,21,2,29,2,2,2,36,"focus on 3 castles, disrupt other strategies, capture uncontested castles"
2,2,2,20,2,2,22,22,24,2,"Trying to win castles 9, 8, 7, and 4 to score more than half the points. Also trying to poach castles where my opponent put 1 or 0 soldiers."
2,2,2,16,17,18,19,20,2,2,"we need 27.5 points to get a victory. overloading the top two castles only nets 19 points and i feel like an emphasis will be to get the highest castles. I'm overloading the middle 8,7,6,5,4. that's 30 points for a victory. the 2 soldiers at the remaing 5 castles are to win castles left with 0 or 1 soldiers and to not completely concede the other 5 castles."
2,2,2,16,2,19,2,15,25,15,"Given that Blotto games are notoriously difficult, I assumed people would not play Nash Equilibrium strategies (this may be a terrible assumption, but I also didn't want to solve for Nash Equilibrium in a different variation of a Blotto game from what I'm used to). With 55 VP total, you need 28 to win. I figured a number of people would try that by going low (1-7), or high (1, 8-10). I thought people would think going high is the obvious choice, and go low. So I mostly went high, but put large allocations on a few small ones other than 1 (since that is needed for both low an high)."
2,2,2,15,17,18,19,20,2,2,"Assuming people would go for the highest value castles the most I started with castle 8, assuming I'd win sometimes, then incremented down, removing one from each lower castle because of the lower priority. Then I dumped 2 into each other castle to catch anyone who tried a similar strategy, assuming they'd only leave 1 to go for the split."
2,2,2,15,16,17,25,5,6,10,Hybridization. Aggressively pursuing lower castle chunks against basic high castle value strategy while leaving medium low numbers to feast on remains of overly clever NYT readership.
2,2,2,14,16,18,20,22,2,2,"Trying yo win all from 4 to 8, which is enough to win the war. Also, trying to win ""free"" castles. "
2,2,2,12,15,18,21,24,2,2,"I decided to try to claim a set of middle value castles that are worth over 100 points, allocating 3 soldiers per point for those castles. The remaining soldiers are distributed 2 each in the remaining castles, in case there are any unguarded easy captures."
2,2,2,12,15,18,21,24,2,2,At least 2 everywhere to win castles against people who leave castles empty/one token soldier. Focus on mid-high numbers as enough points on offer to get to 28. Do not want to waste a sizeable amount of troop on 9 and 10 has other armies could really focus on winning points there
2,2,2,12,2,17,2,2,27,32,"Focused on securing 29 points, then what would put me over the edge against someone with the same strategy. Attempting to overwhelm my opponent in just enough locations, and pick up easy points at undefended locations (or locations contested by only one soldier, to counter someone using the same strategy). "
2,2,2,12,2,2,19,26,31,2,"Aiming for a sum of 28 (just over half of 55), I'll try to put my eggs in four baskets. Guessing to leave 10 unguarded as a psych tactic against people that put a lot there."
2,2,2,11,16,16,2,2,21,26,"A barbell strategy - i.e. ""all or none"" - felt the most appropriate. Try to win a castle or not waste many soldiers in defeat. But given that others likely have similar strategies, I left a minimum of 2 soldiers in each, predicting that others will leave only 1. I specifically chose to use numbers like 11, 16, 21, 26 in case my archenemy chose round numbers like 10, 15, 20, 25."
2,2,2,11,2,2,11,15,51,2,"My main tactic is to ignore 10 due to competition, and focus on 7, 8 and 9. I sent a minimum of 2 to the remaining castles, in case they are either unoccupied, or another person had the same thought and sent a minimum of 1 to all the castles. If they also sent 2 as a protective measure, then bravo and we all tie. if 3, well, I hope I won 7 and 8 then, since their forces were spread thin. 4 is bumped to 11 because I wanted to ensure I win against a person that spread 10 across each. Too many possibilities to protect against, I know."
2,2,2,11,0,21,31,31,0,0,"28 points requires 4 or more castles, I wanted to avoid the competition for the top spots as much as possible so chose a wider distribution assuming that fewer opponents would go for the 1/2/3 point castles. This is probably strong against 4 castle solutions (competing strongly for 8 and 7, then challenging at a weaker level for 6 and 4 should hit a weak spot in most 4/5 castle solutions). Probably weakest against larger spreads, and a bit of a crap shoot against other 6/7 castle solutions, just depends where you load up. Fun one, thanks."
2,2,2,10,20,20,20,20,2,2,"I am banking on no one going for low point value castles, so I can grab those incremental points. I placed majority of troops in Castles 4 - 8 in anticipation of enemies going all in on high value castles."
2,2,2,10,13,17,22,28,2,2,Divine inspiration.
2,2,2,10,13,16,16,35,2,2,Send at least 2 troop to every castle to win over anyone who sends 1 or none. Put 35 on Castle 8 to counter anyone who focuses on 8-9-10 splitting troops evenly. Target Castles 4-8 for 30 points out of 55 available.
2,2,2,10,11,16,17,18,11,11,Seems Good
2,2,2,10,2,2,26,26,26,2,"You need at least 4 castles to win, evenly deployed would be 25 each, I'm trying to win those battles by deploying 26. I expect almost everyone to at least make a token effort for castle 10, so I'm abandoning it. I need castle 4 on top of my other castles, so the majority of my remaining deployment is there. I think some people will deploy a single soldier to castles they abandon, so I'm trying to win those battles as well. This wins against the following logical deployments:
0 0 0 0 0 0 25 25 25 25
16 16 16 17 17 17 17 0 0 0
2 5 8 11 14 17 20 23 0 0 0
0 0 0 0 0 0 21 24 27 31
2 4 6 8 10 11 13 15 17 19"
2,2,2,9,10,25,25,25,0,0,Surrendered higher value castles and focused efforts on several medium sized castles in hopes that they would add to far more.
2,2,2,6,8,16,16,16,16,16,I wanted to distribute them somewhat evenly towards the higher numbers
2,2,2,6,8,12,14,16,20,18,"Modeled chance of winning each castle as an exponential distribution in the number of soldiers used, and then iterated through different possible means (generally increasing as the point value increased, though not always, especially at either end of the scale). Iterated through possible strategies and chose the most successful ones for various values of the means, then cross-tested them for robustness. Achieved about an 80% win rate with this one in my simulations."
2,2,2,5,5,26,26,26,3,3,Never leaving any blank but counting on the middles.
2,2,2,4,10,12,14,16,18,20,trying to win 4 of the highest 6
2,2,2,3,5,6,9,14,22,35,Picked some Fibonacci like numbers
2,2,2,3,4,6,11,14,22,34,"I noticed that the sum of the first 9 Fibonacci numbers was 88, so if I placed 1 troop in castle 1 and started the sequence on castle 2, I would have enough troops left over to place an additional troop in each castle. This left me with 1 remaining troop for castle 7, as placing 9 troops seems quite inefficient in a game where you expect a lot of 10s. Looking over my answer, it felt a little crazy spending 35 troops on castle 10, so I bumped it down to 34 and placed that remaining troop again in castle 7 so I could beat the 10s instead of tie."
2,2,2,3,3,10,18,19,20,21,Emphasis on winning highest value castles
2,2,2,2,22,22,22,2,2,22,"I never put 0 or 1 soldier in a castle because I suspect that several opposing armies will often put 0 or 1 soldier, and I want to be able to win those.
For some reason, I feel like folks will focus a lot of their troops on castles 8 and 9, so I mostly want to concede those castle, (except I want to win it if the opponents are also conceding the castle).
I also kinda feel like there's not much difference between 13 to 19, but 20, 21, and 22 armies are each more likely to win."
2,2,2,2,21,21,21,21,4,4,"Minimal focus on the very high (people more likely to devote large amounts of troops to capture the most valuable castles) allows me to heavily attack the middle ones. Capturing 9 and 10 is worth 19 points, but 5-8 is 26. Putting 4 towards 9 and 10 lets me potentially capture them from other people attempting to metagame similarly to me."
2,2,2,2,18,20,2,22,28,2,"Reduce wasted troops contesting some castles, but still trying to edge out others using the same strategy. Also, making sure to commit heavily to enough castles to get to 28 points"
2,2,2,2,18,18,18,18,18,2,"Everybody will overkill 10, and 1 to 4 are insignifficant. I will put soldiers there anyway, and 2 because many people will choose to put 1 ""for the chance"" in some of the places."
2,2,2,2,16,19,2,25,28,2,"Securing 28 points means securing victory, which can be done with as few as 4 castles. I select the lowest value set of 4 castles meeting this goal to focus on, which I expect to be the least contested. These are castles 9, 8, 6, and 5. I commit 2 soldiers to contest minimal investments in those castles by the opposing warlord, and then distribute the 84 remaining in proportion to the value of my four primary targets."
2,2,2,2,16,17,18,19,20,2,"A lot of people are going to try to win castle 10 and put a lot of troops there. I'm basically ceding it. I put a nominal 2 in case other people are completely abandoning it.
Anything under 4 isn't worth much (why put people on castles 1-3 when you could put them on Castle 7 and get more points?) Again, I'm putting a nominal 2 to pick up a few easy points against people who abandon them completely.
I put a high number of troops at castles 5-9. Winning 9,8 and two of 7,6, and 5 is enough to win. Hopefully in the cases where I lose 8 or 9, I pick up a couple points at a lower castles"
2,2,2,2,16,16,16,16,26,2,I basically ignored #10 to focus on 5 to 9. I put at least 2 soldiers at each castle hoping my opponent would just send one.
2,2,2,2,14,16,18,20,22,2,Second submission... for curiousity's sake. No real solid strategy... just go ole gut feeling.
2,2,2,2,14,2,21,22,31,2,"You need 28 points to win. I went all out on 5,7,8,9. 1 more than I needed but wanted to create some randomness to beat similar strategies. I then placed 2 on the remaining spots. If someone beats me on 5,7,8,9 they are likely choosing a similar strategy and 2 on every castle provides some insurance in case I miss one of my key castles."
2,2,2,2,13,24,2,25,26,2,"I focused on a small number of castles that would provide a sufficient number (28) of victory points. I chose 9,8,6, and 5. I placed at least 2 soldiers in every castle to defeat anyone who put only 1."
2,2,2,2,11,16,21,21,21,2,"I can win if I secure 5-9, so I focused on those assuming that 10 will be more sought after. I put 2 on each of the others to pick them up if someone only put 0-1 on them. I tried to make sure all of my numbers were not divisible by 10 or 5, because people tend to choose those. I also wanted to make sure 5-9 beat the 10 that would be used in a simple even distribution. "
2,2,2,2,11,11,11,3,3,53,Absolute chaos
2,2,2,2,11,11,2,33,33,2,Aiming for 28 points while defeating what I think will be common strategies. Main weakness will be against something that is even more spread out (beats all the 2s) but also spikes at 5 or 6.
2,2,2,2,11,1,1,23,26,30,High numbers at high value - give up a few mid range castles
2,2,2,2,10,25,20,33,2,2,"Rather than reach the 27.5 needed to win, my strategy is to deny paths to victory for my opponent. Most paths to 27.5 require winning at least one of the castles worth 6, 7, or 8 points. I've also placed 10 on the 5 in an underwhelming effort to block the shotgun approach of 9 troops on each castle. I've very lightly distributed troops to the other castles in the hopes of picking up undefended castles."
2,2,2,2,10,20,20,20,20,2,Concede the 10 pt castle as people will likely fight most for it but leave 2 incase someone wants to concede it. Try to win castle 5-9 and hope that people concede the lower value castles. Keep the 6-9 armies the same to let other people out think themselves
2,2,2,2,10,16,18,21,25,2,"Minimum of 2 per castle as I think a lot of people will send 0 or 1 to some as a man-made strategy, and then enough to the others that I'll come out on top against either an even distribution strategy or an even weighted-by-points one.
If I had the time I would do some simulations to decide on the best distribution against various strategies, but I have a small child, so such things are not possible.
Thank you for the interesting challenge - more of these crowd-sourced submissions please! "
2,2,2,2,10,14,18,22,26,2,"Assume folks go after 10 hard, so put minimal support. Focus on 9 through 5 with varying degrees. I thought it would be a good strategy to put 1 instead of 0 for the absent castles, but upped to 2 in case others had the same strategy"
2,2,2,2,3,3,4,30,50,2,Hunch.
2,2,2,2,3,2,18,28,39,2,Seeing if I can get some big points and share in some others.
2,2,2,2,2,42,2,2,2,42,"Focus on 2 castles, disrupt others, capture uncontested castles"
2,2,2,2,2,27,33,24,2,2,"I wanted to be able to pick up cheap points by beating anyone who leaves a castle un-attacked or with just one attacker. I figured lots of people might concentrate on winning castles 9 and 10, so I concentrated my forces on three smaller castles that add up to more than 19 points. Varied my troop numbers at the castles 6-8 in case of opponents divining them evenly."
2,2,2,2,2,26,2,2,2,58,"Get easy points, take castles 10 and 6. Relies on opponent leaving a bunch blank or sending 1s"
2,2,2,2,2,22,22,22,24,0,Conceded 10 points hoping to get some of the lower castles in exchange.
2,2,2,2,2,22,22,22,22,2,(i may have mis-typed the first entry... stupid mobile phone. sorry!)
2,2,2,2,2,22,22,22,22,2,"I figured the 10 castle would be highly sought after, so i punted there. I tried to overpower the next 4 castles, as winning those will give me victory. I also put 2 in every other castle, with the idea that some people will punt castles completely, others will put 1 troop in some castles, I will beat the people in those castles which will cover me if they go super heavy in one of my 4 big castles."
2,2,2,2,2,22,22,22,22,2,Revised my last one where I didn't use all of my troops. Math is hard.
2,2,2,2,2,18,18,18,18,18,Top Five (for robustness instead of top 4) and the rest to counter snipes
2,2,2,2,2,17,17,17,20,2,"Fighting a meta of 1s, then dodging a fight for 10"
2,2,2,2,2,14,16,18,20,22,2 men to defeat everyone who just sent 1. then hope to get lucky with the larger ones.
2,2,2,2,2,12,21,21,22,14,
2,2,2,2,2,11,11,10,38,20,
2,2,2,2,2,9,18,25,28,10,"It seemed prudent to concentrate forces. I did 2 troops to the lower yield castles, just in case lots of people concede those with 0-1 troops (although the case can be made, others used my reasoning as well, which would dictate 3 troops, and on and on). But, I chose 2. Castle 10 is the jewel and people may send a bulk of troops there or either concede it. I don't want to waste troops against players that want it at all costs, but I didn't want to just give up on it either. If a player sends just token forces there, I like my odds with 10 troops. and if not, then I'm glad to let them expend lots of troops against my 10. My thought was to really concentrate forces, and do so at the castles towards the upper half of the castles, with castle 10 being the exception. I need 28 points. My goal is to take a high percentage of the 7-9 castles and hope for a few others. and if the opponent has overwhelmed me at 1 or 2 of those, then I hope my ""beat token troop deployments"" strategy works at enough of the other castles to succeed. Look forward to seeing the data!"
2,2,2,2,2,8,14,28,38,2,Many people will overload on 10 or put 0 or 1 in some castles. I hope to abuse that.
2,2,2,2,2,2,26,29,31,2,Targeting castles 9/8/7. Will try to take any other castles that others allocate 0 or 1 soldiers to with 2 solders.
2,2,2,2,2,2,22,22,22,2,"Because I've run a blotto tournament at my office (and before that, at grad school w/ my students) each summer for the past 10 years, and this strat tends to do well against first-timers. (So maybe not so well against readers of your column but oh wells!)"
2,2,2,2,2,2,20,33,33,2,"Basically I'm sacrificing castle 10 to improve my odds with 7,8 and 9, then hoping the 2 soldiers I send to the other castles is enough to get me 4 more points.
I compared 33 different combinations against each other. This was the best performer overall, and second best when I pitted my top 10 against one another.
It was interesting to see how many of my most ""clever"" ideas would often lose to less sophisticated deployments. A deployment sending 10 soldiers to each castle was 15-17 overall, but 8-2 against my 10 best performing combos.
My tenth best performing combination is actually 9-0 against the other ones in the top ten. That one sends 2 soldiers each to castles 1-3, 10 to castle 4 and 14 each to castles 5-10. I chose not to submit that one under the assumption that most people would not put as much time and effort into analyzing this as I did.
"
2,2,2,2,2,2,18,21,23,26,"8,9,10 + any other wins. But a strategy that puts all its eggs in that basket is very vulnerable if it loses any of 8 9 or 10. I went heavily on those, but also 7, and put 2 each on all the others to pick up any where the opponent puts 0 or 1."
2,2,2,2,2,2,18,21,23,26,"It wins vs an proportional-value distribution across all 10 castles (1/55 * 100, 2/55 *100, etc); wins against something like 25/25/25/25 across the top four castles as well; and can also win by picking up < 4 of the top castles and stealing cheap points on castles 1-6 if my opponent ignores them completely by going high. It's weak to a strategy that specifically tries to pick up lots of smaller castles and one big one (which might actually be a winning strat)."
2,2,2,2,2,2,18,2,34,34,Try to edge out people getting 8-10 and pick up a few other castles to reach 27 points.
2,2,2,2,2,2,13,12,31,32,"You need to win 28 points to win. There are many, many ways to get these 28 points, but it seemed like the most obvious were going for the highest 4 or the lowest 7 castles. This strategy beats all varieties of both of these that I could come up with. There are many, many mixed strategies, but this one seemed to have a good balance of spreading out to catch someone not looking at the low castles and focusing to grab some of the high castles."
2,2,2,2,2,2,2,28,29,29,Easiest way to win is get the top 3 castles + 1 other. Put 2 on every other castle to put them all in play too.
2,2,2,2,2,2,2,28,28,30,"Many troops in three castles which are enough to win on their own. Against people doing something similar, hoping to win 1-2 of them and lower castles."
2,2,2,2,2,2,2,21,21,44,"I tried 5 different strategies, pitted them head to head, and this one won more than the others and beat the next best head to head."
2,2,2,2,2,2,2,2,82,2,Guarantee a big number and hopefully pick up some smaller ones where others leave them as zero.
2,2,2,2,2,2,2,2,42,42,"I think most people will try to get to 28 as efficiently as possible, which requires winning at least four castles with your allotted 100 soldiers. I am banking on overpowering the 10 and the 9 from those strategies and picking up uncontested (or lightly contested) castles to make up the final 9 points. This configuration will beat any configuration that tries to distribute its soldiers evenly (or relatively evenly) between only 4 castles, which I hope many people will do. "
2,2,2,2,2,2,2,2,2,82,Put 2 for everything just to beat everyone who sends one troop just in case someone sends none. Then bet all my marbles on the big guns at castle 10!
2,2,2,2,2,2,2,2,2,2,"Send two to every castle. For each castle, one of the troops stays & attempts to capture, while the other retreats back & reports to me how many troops the opponent sent. With the additional information, I'll have the advantage on how to deploy the 90 troops for a counter attack. Lose the battle, win the war. "
2,2,2,1,2,7,19,19,9,37,"Wrote a genetic algorithm because I thought it would be cute, and let it run for a while. It doesn't converge because it's easy to generate a child that can beat its parents, so to pick a final submission I looked at the best deployment from a few generations and chose the one that appealed to me."
2,1,16,15,16,16,13,19,1,1,"The race to 29 so to speak, if you can guarantee your own total, cede the more valuable castles."
2,1,6,6,7,11,16,21,23,7,"Concede 10 to focus on 9,8,7,6. Avoid round numbers and bid slightly above them. Bid 2 on 1 since most will probably bid 1 or 0 on it"
2,1,5,15,4,13,5,19,14,22,genetic algorithms or something
2,1,4,4,5,11,19,17,13,24,"This deployment was chosen by simulation, based on win% against random allocations, but also beating the allocation achieved by simple weighting. Simulations were repeated until a reasonably high win % was attained. "
2,1,3,7,12,18,26,31,0,0,"A mixture of probability, pop psych, a few borrowed bits from behavioral economics, and a lifetime of table top strategy gaming."
2,1,2,11,16,2,2,2,31,31,
2,1,2,2,5,13,10,12,22,31,"I ran a ton of simulations. I couldn't find a strategy that consistently won, but this arrangement won my mini-tournament. Obviously you need to capture some of the high-value targets but you can't give up on the little ones either."
2,1,1,1,15,2,30,2,44,2,"Focus on three high value castles, and put in token force on others. I hope is that other players will also have low-commitment castles ( 0 or 1 ) that I can take will minimal commitment. No statistical backing for this, just hunch."
2,1,1,1,1,1,1,30,31,31,"I'm attempting to ""guarantee"" the 8, 9, and 10 point castles, and then I only need one more point, which I'm hoping to pick up from the ""irrelevant"" one point castle. Placing 1 point in each castle gives me any freebies. "
2,1,1,1,1,1,1,30,31,31,kind of just guessing here.
2,1,1,1,1,1,1,27,31,34,"I want at least a chance at each castle if someone deploys no one, and the highest 3 plus the 1 castle are enough to win, so I distributed the remaining troops proportionately to the point values."
2,0,2,0,15,17,20,5,11,28,"I created a spreadsheet that generated a few thousand strategies, each designed to beat the previous strategy by deploying armies in the most efficient way possible to maximize score. (After winning as many battles as possible by a margin of 1, the remaining soldiers were then distributed by one of three different methods.) I then used a macro to play each of these strategies against every other strategy (War I). I eliminated the weakest strategies (less than 50% win rate) and ran the macro again (War II). I picked the strategy with the highest average War I and War II score."
2,0,0,8,10,12,14,16,18,20,Let's see what happens
2,0,0,0,0,0,0,32,33,33,I need to win the top 3 castles plus one so I tried to optimise for this result.
2,0,0,0,0,0,0,31,33,34,
1,19,1,19,1,19,1,19,1,19,Decided to go for unpredictability while still leaving room for pickups if the opponent tries to go *more* unpredictably;
1,18,1,18,1,18,1,20,1,21,"Want to win every one that our opponent leaves empty, also want to win evens more than odds because this gets more points"
1,16,16,16,16,16,1,16,1,1,"The total # of points is 55, so you have to gain 28 of them to secure winning a round. It seems prudent only to aim at this minimal amount, forsaking 27.
But instead I send 1 soldier to each castle, in case the opponent stopped reasoning at the previous step.
That leaves me with 90 soldiers to divide. I count on many players fighting mainly for the 10 and 9, but you don't need those to win.
Again, others may think similarly and go for the lowest: 1 till 7.
But we need to take different decisions in order to win, so instead I divide my troops as equally as possible over six castles: 8, 6, 5, 4, 3, 2. 90/6 = 15, so I add those soldiers to the previous one for the selected castles."
1,15,17,14,1,1,11,19,20,1,"Ran a terrible genetic algorithm to find something better than random, then something better than that, etc etc. "
1,11,11,11,11,11,1,41,1,1,"Focus on what I'd assume would be a popular castle, 11s to beat those who use round numbers, and 1s in castles to punish those who leave anything blank."
1,11,1,14,1,20,1,24,1,26,"Should hold its own against top-heavy developments, without ignoring mid- and low-level castles"
1,11,1,1,17,19,23,25,1,1,"Just need to win 28 points, my strategy hopefully takes out people who allocation 10 to each castle and those that try aggressively to take castle 9 and 10."
1,11,1,1,16,19,23,26,1,1,"Trying to win 2+5+6+7+8=28 in as many matchups as possible. Points assigned are proportional to value, except castle two took troops from the others to avoid losing to all 10s."
1,10,12,14,15,20,1,25,1,1,j'ai ??vit?? la 7 (rapport aux pr??c??dents tests de distribution) ainsi que la 10 et la 9 (les plus fournies en points).
1,10,11,11,11,16,1,26,12,1,Blind luck
1,10,1,1,14,15,20,34,2,2,"Need to capture 28 of 55 points, so ignore 27 points outside of 1 or 2 troop in case someone sends 0 or 1. Assume people will pursue either a top or bottom strategy, so go for mid range castles. Also assume people will put more troops behind more valuable castles with either strategy. Therefore go for castles 5, 6, 7 & 8. Still need 2 more points to get to 27 so go for castle 2 as well. Need enough troops in 8 to withstand a 'top' strategy; need enough troops in castle 2 to withstand a 'bottom' strategy."
1,9,10,10,10,10,20,30,0,0,
1,8,2,2,13,18,20,32,2,2,Tried for best chance of getting 28 while losing C9 and C10 assuming other players would spend heavy there. 2 each on C9 and C10 to counter someone else with similar strategy.
1,8,1,1,18,19,22,30,0,0,"Ran lots of simulations. I quickly noted that ignoring a castle or two did better, and focusing more on getting the points you need to win made more sense. Then it became a question of which castles to focus on, and after more tests, came up with these...
I figure most strategies will be top heavy, i.e., focusing on the top 3 castles. I'm focusing on getting the 28 points I need from the rest. Go figure.
(The second place strategy ignored castles 1, 6 and 10; 3rd place ignored 8 and 9... But all seemed to focus on getting the points you need from a minimal set). "
1,8,1,1,14,19,24,30,1,1,I identified 5 castles that would give me enough points to win but had a good chance to be undervalued by others. Then I distributed the troops to those castles in a way that was roughly proportional to their point value and distributed one troop to each of the other castles in the event that someone else's strategy involved leaving a castle undefended.
1,7,11,11,11,11,11,35,1,1,"With 55 points available, the goal is to get 28 points. The most obvious strategy is to concentrate forces into the smallest number of victories: going for 10,9,8 and then one more, or 9,8,7, etc. The smallest number of victories needed is four, and every single four-victory combo needs to include the 8, 9, or 10. These castles should see the heaviest fighting, so I want to avoid them as much as possible. But to ensure my own victory without having to divide my own forces too thin, I need at least one of them. The 8, as the smallest trophy, makes a logical frontal point of attack, and I have sent enough troops to beat anyone who sends up to a third of their force there. At the same time, some people will divide their forces up to try and grab as many castles as possible. My strategy defends against someone sending 10 against each castle, and the single scout armies give me a chance against someone who focuses their forces on a wide selection of weaker castles. "
1,7,8,9,10,11,12,13,14,15,Smooth distribution of troops.
1,7,8,9,10,11,12,13,14,15,"For this, I didn't try to get in the minds of my opponents. I developed a random deployment generator - or tried to. Then pitted each deployment against every other deployment.
I first selected a random number from 1 to 10. This would be the first castle I would deploy troops to. I selected a random number from 0 to 100 to determine the number of troops. Then I selected another number from 1 to 10. If it was the same as the first draw, I drew again. Then selected the number of troops to send between 0 and 100 less the number at the first castle. Repeat this until all castles have been assigned troops. This produced a lot of identical deployments, which made me question the randomness of this. After further thought, I should chosen the second castle with a random number from 1 to 9. But because I'm up against a deadline, I don't have the time to develop truly random deployments. I can still glean some insights from my faux random deployments.
I got about 10,000 unique deployments and ran them against each other - round robin style. I added in a few of my own (e.g. even distribution, weighted high, weighted low, etc.) I gave 1 point for a win, 0 for a loss and 0.5 for a tie.
The winning deployment earned 9,663.5 points and was one of my chosen strategies. This beat out the next best strategy (a random one) by almost 40 points.
Honestly, I'm disappointed in this answer. I was hoping that one of the random ones would prove better. "
1,7,8,9,7,4,11,16,21,16,
1,7,2,11,14,2,2,26,33,2,"I am attempting to beat the strategy that does not have any troops on castles they do not wish to take. I assume those enemies would proportionally distribute troops based upon the win probability share for each castle. I choose the winning strategy of taking castles 9, 8, 5, 4, and 2, while putting down 2 troops on each remaining castle, in case my opponent puts down just 1 or 0 troops. I only put down 1 member of my army on castle 1 as it of such little value that I do not feel it is worth the additional unit. I figured many opponents would fight for castle 10, or put down a distributional amount on castle 9 and I wanted to ensure I could win a high value castle, so I choose castle 9. An aggressive, distributional player, would put 32 troops on castle 9, thus I put 33. Given I can no longer distribute proportionally, I took the troops away from castles 4 and 5, hoping my counterpart will attack aggressively on those castles, or not at all. Taking castles 9, 8, 5, 4, and 2 like my strategy is designed for, we will battles for me, with 28 points."
1,7,1,1,16,20,24,28,1,1,"Choosing to avoid the obvious targets of 10 and 9, I focused on minimizing the number of numbers I'd need to win to beat an opponent, leaving me with 8, 7, 6, 5 and 2. I then distributed more soldiers to the higher numbers, more or less proportional to their worth. Finally, realizing that some opponents may do the same, I took away a few soldiers and put at least 1 in all of them, to take advantage of any zeroes a opponent may leave."
1,7,1,1,15,15,30,30,0,0,"I tried to find a ""path of least resistance"" to 28 points, choosing to cluster my troops in the mid to upper value castles and leave the highest point castles alone since it would take the most troops (theoretically) to win those points. I also stuck 1 troop in the remaining lower castles to stock pile points in the event that the other player left those castles empty, which would allow me to lose on of the other castles and still win."
1,7,1,1,11,11,28,38,1,1,"Basically give up on 9 and 10 and try to get 5, 6, 7, and 8...and then 2. If I win those all, the other guy can't win. I let a 1 for each of the others in case I oppose some zeroes. "
1,7,1,1,1,1,24,1,30,33,Concentrate forces in an atypical pattern to get to 28 and place one in all other bases if others concentrate forces in only 4-6 bases. Concentration based in proportion to points at base
1,7,1,1,1,1,1,29,29,29,"I'm assuming a relatively even distribution of soldier deployment across castles to be most common. I'm attempting to ensure victory by taking castles 10, 9, 8 and one other castle. I envision castle 1 being disproportionately targeted, so I am targeting castle 2 to complete my majority, with any other castle completely neglected by an opponent serving as a back up plan."
1,6,8,11,14,17,19,22,1,1,"I'm going with a ""dominate the red states"" strategy and completely abandoning NY and California (castles, 9 & 10). For castles 1-8, assign them troops proportional to their value. Finally, take 2 troops from castle 1 and put one a piece in 9, 10 to beat the other ""me"" players out there."
1,6,8,11,1,1,2,2,34,34,"I'm relying on a lot of people trying to win by capturing 4 castles totalling 28 points, and attempting to deny them the possibility of doing this by taking 9 and 10 which are required for any 4-castle winning combination. I figure 5, 6, 7 and 8 will be competitive because they also feature in 4-castle winning combinations so I've instead attempted to sweep up 2, 3 and 4."
1,6,6,6,6,11,11,16,16,21,"I believe most people would set multiples of 5 on the castles so I set the value of my castles slighlty above these multiples e.g. 6,11,16,21. Then I put more soldiers on castles which have higher value. "
1,6,1,13,1,19,1,25,1,32,Minimal commitment to the odd-numbered castles and then distributed the remainder to the even castles based on relative strength of those castles.
1,6,1,1,17,22,22,26,2,2,"I tried to get exactly 28 in a less intuitive way than most people would, and didn't leave any zeroes to ensure I don't give any points away for free."
1,5,5,11,16,21,16,11,7,7,maximize middle points with flat out guessing.
1,5,1,12,1,21,1,26,31,1,"try to win specific sports (just enough for 28 points), take any ""free"" victories"
1,5,1,6,21,26,1,37,1,1,perfect combination of defense and offense
1,5,1,5,1,5,1,5,38,38,I let each soldier choose for himself
1,5,1,1,17,21,24,28,1,1,Attempt to secure 28 points needed to win while exploiting opponents assigning 0s.
1,4,9,3,16,19,7,10,12,19,"This game, at this scale, is not solvable through theory alone. In a simpler, 3-battlefield case this problem is essentially solved, but with 10 battlefields and 100 soldiers the scale is too large.
I decided the best course of action would be to optimize over the win/loss rate of a strategy against a set of random possible opposing strategies. So I booted up R and ran a simulated annealing algorithm to create a strategy that seemed to win a lot. That failed horribly because the set of all opposing strategies is enormous.
So instead of trying out random opposing sets, I tried to create a smaller set of ""plausible"" opposing strategies (repeated or nearly-repeated values in 3-10 slots making up the bulk of the allocation, with random allocation to all other slots). I found a strategy that was robust to my changing various parameters of my ""plausible strategy"" set, and decided to submit that (win rate in my simulator is about 87% across plausible-strategy perturbations).
I don't know if I picked a good plausible strategy set, but that's why I'm submitting my answer! I did check to make sure it beats ""all 10's"" and ""11's and 9's,"" which I suspect will be really common. I don't beat (0,0,0,0,0,0,25,25,25,25), but that's a risk I'm going to take."
1,4,7,9,15,17,2,19,26,0,"Every strategy can be beaten if known in advance. It's not possible to guess what other people will do, but I've dropped out of competing for castle 10, while trying to ensure I win castle 9 as well as 8, 6 and 5 totalling a winning 28 points. I've spread some remaining troops around the lower numbers in order to hopefully pick up enough points if I lose one of the castles in my primary strategy."
1,4,6,12,15,15,21,24,1,1,Give up on the two highest where opponents will mostly focus their troops. Focus instead on capturing mid-high value castles.
1,4,6,8,12,14,16,18,20,1,"Most people will put some of their troops on the biggest point castle, 10, leaving less for the rest. So I give away castle 10 and divide out the rest according to the castle's worth proportionately. The extras I have I use to gain a slight advantage to higher point castles. I cover castle 10 with 1 troop in case someone else has the same logic as me."
1,4,6,8,10,12,14,16,18,11,Most people will load up the high value so i give away the top spot unless they are spread evenly to try to ensure the next group can be won
1,4,5,5,15,15,15,15,25,0,"No sense fighting over castle 10. Concentrate forces on 9, which is worth almost as much, and the other higher-value castles. A few points to lower-valued castles in case someone concentrated more heavily on the higher-valued ones."
1,4,2,2,3,12,14,16,26,20,"First I picked several intuitive submissions: all 10s, 100 at Castle 10, and ""1, 3, 5, ... 19"", among others. Then I ran a script to pick a deployment that generally performs well against all of them."
1,4,1,11,1,21,1,26,1,33,"I brainstormed a lot of different strategies and played them off against one another. This one (focusing on the even towers) came out on top.
I tried to look at different ways to get to 28 points, with perhaps some wiggle room. The obvious is just to aim for the high numbers. Towers 8-10 leave you one point short, so you can try to take the #7 or drop all the way to trying to sneak the #1. You can try to abandon the high numbers and just take #1-7. I thought of some sneaky in between answers, like taking towers #4-8. Generally the top heavy strategies worked well. Any strategy that focused more troops on the bigger towers did better than those that divvied out the troops equally.
This final strategy of focusing on the even towers ended up winning the mini battle-royale. I suppose the point is to win the 10, while conceding the 9, win the 8 , while conceding the seven, and so on, netting just enough points to win with a little room to spare. I made sure to get at least one troop to each tower to sneak wins against folks who focus too heavily. I massaged some of the totals to keep them above any product of 5 (11, 21, 26...). I figured 33 was good up top, since most folks won't commit more than 1/3 of their army to any one tower. "
1,4,1,3,11,17,10,21,1,31,Wrote a script to generate a bunch of strategies and play them in a big round robin + elimination tournament.
1,4,1,1,18,21,26,26,1,1,"I'm pretty certain this game isn't solveable and I'm far too lazy to model scenarios so I just played a few practice rounds with ""friends"" and submitted the most successful one."
1,4,1,1,1,1,1,30,30,30,
1,3,6,14,16,17,18,21,2,2,abandon the most valuable castles and attempt to win the mid valued ones
1,3,6,10,15,20,25,15,3,2,
1,3,6,9,1,15,18,21,25,1,Abandon the likely contested Castle to deploy achieve more troops in less likely corseted Castles. Slight weighting to higher castles.
1,3,5,8,13,21,16,13,11,9,"Assumed people will go for high or low values, so I concentrated my higher values toward the middle, with some extra weight going toward the higher value castles."
1,3,5,8,10,13,15,18,15,12,
1,3,5,7,9,12,14,15,16,18,troop PV + overweight middle castles (which may be less defended)
1,3,5,7,9,12,12,14,16,21,"Proportional to the number of points, with a slight variation."
1,3,5,7,9,11,13,15,17,19,It just happens that 2n-1 for n = 1 to 10 is 100.
1,3,5,7,9,11,13,15,17,19,"Some boring weighting based on value, I should probably dirty it up with some noise."
1,3,5,7,9,11,13,15,17,19,"There are 55 total points to be won and 100 soldiers you can use to get those 55 points. Therefore, I have approx 1.8 soldiers to spend, per point. I just multiplied each castle's point value by 1.8 soldiers per point. I then rounded up to the nearest integer for castles 6-10, and rounded down for castles 1-5, since I'd rather win the better castles and I'm more okay with losing the weaker castles.
This had the interesting side effect of my troop deployments merely being equal to the consecutive odd integers from 1-19."
1,3,5,7,9,11,13,15,17,19,"Thinking economically, you want to distribute your resources efficiently. Efficiently in this case means beating your enemy by 1. With that in mind, I've aimed to narrowly win as many castles as possible. I'd love to see how other simple strategies (e.g. 20 on each of the top 5 castles) would perform."
1,3,5,7,9,11,13,15,17,19,"I determined that since there are 55 available points and 100 available troops, each point was worth approximately 1.82 troops so I attempted to distribute the troops based on that. "
1,3,5,7,9,11,13,15,17,19,"I wanted to have my greatest chance of winning to be at castle 10, but to leave those that totaled up to 10 a similar probability. So castle 10 has 19 soldiers, but 9 and 1 combined have 18 soldiers, as does 8 and 2, 7 and 3, and 6 and 4."
1,3,5,7,9,11,13,15,17,19,"Scale defense to value of castle divided by total points, with bias to top castles. "
1,3,5,7,9,11,13,15,17,19,soldiers are roughly proportional to victory points
1,3,5,7,9,11,13,15,17,19,"Sent troops that roughly equate to the value of each castle, and hope it works out in the averages."
1,3,5,7,9,11,13,15,17,19,Made the % of troops near % of points available rounding down. Put extra troops on biggest one evenly spread.
1,3,5,7,9,11,13,15,17,19,proportionally to the Banzhaf power index
1,3,5,7,9,11,13,15,17,19,"Strict linear distribution, using 100 as the total, and trying to maximize Castle 10 without losing all the other ones. Started at 1 troop for Castle 1, then kept adding until I filled all of the 100 spots."
1,3,5,7,9,11,13,15,17,19,A simple pattern.
1,3,5,7,9,11,13,15,17,19,"I felt like they should be distributed mostly proportionally to the amount of points up for grabs, and so 2p-1=s fit that idea."
1,3,5,7,9,11,13,15,17,19,I decided to choose soldiers proportional to the values of each victory point.
1,3,5,7,9,11,13,15,17,19,I used each castle's Shapely-Shubik power index to distribute troops.
1,3,5,7,9,11,13,15,17,19,basically deployed 1.8 per castle point rounded down
1,3,5,7,9,11,13,15,17,19,"Interestingly, my naive solution was to just use an arithmetic sequence starting at 1 with an increment of 2. My long winded solution below comes out as almost the exact same result, so I just went with the naive one.
After much back and forth, I gave up on trying to predict others' strategies and assigned soldiers solely based on my perceived relative importance of the castles for victory. I used the following python script to determine relative importance of castles. (I ignored ties in my analysis to keep it simple)
from collections import defaultdict
from itertools import combinations
from math import ceil
# constants
SOLDIERS = 100
CASTLES = 10
total_points = sum(range(CASTLES + 1))
victory_points = ceil(total_points / 2)
# 1024 (2 ** 10) combinations of conquering 10 castles
combs = []
for x in range(11):
combs.extend(list(combinations(range(1, CASTLES + 1), x)))
# Half the combinations have enough points for victory
winning_combs = [comb for comb in combs if sum(comb) >= victory_points]
# Weigh importance of castle by inverse of total castles needed.
# Only count a castle if victory depended on it.
weighted_score = defaultdict(float)
for comb in winning_combs:
total = sum(comb)
weight = 1 / len(comb)
for val in comb:
if total - val < victory_points:
weighted_score[val] += weight
# Assign soldiers proportional to weighted score
normalizer = sum(weighted_score.values()) / SOLDIERS
soldier_proportions = {k: v / normalizer for k, v in weighted_score.items()}
"
1,3,5,7,9,11,13,15,17,19,
1,3,5,7,9,11,13,15,17,19,Roughly proportional to the value of each castle
1,3,5,7,9,11,13,15,17,19,linear progressions sound good
1,3,5,7,9,11,13,15,17,19,Nothing more clever than trying harder for the high-value castles.
1,3,5,7,9,11,13,15,17,19,Even distribution weighted by point value
1,3,5,7,9,10,12,14,21,18,"The total number of possible points is 55. You are given exactly 100 soldiers to battle with, meaning that you should spend on average around 1.8 soldiers per possible victory point. If you multiply 1.8 times 1, 2,3,4... etc: You get 99 points, 95 if you rounded down. Then I just distributed them based off of this and put the extra 5 on Castle 9. "
1,3,5,1,10,12,14,16,18,20,"Even, weighted distribution, but writes off castle 4/adds 1 to 5-10 to try to beat anyone with the same idea/distribution. "
1,3,4,15,16,20,20,20,0,1,Played against a coworker and this seemed like the most optimal.
1,3,4,8,12,15,18,19,20,0,deploy none at 10 because it would increase odds at several other castles
1,3,4,6,9,11,14,16,17,19,"No very tricky strategy here, I simply assigned the soldiers according to the value of the castles (e.g. a castle worth twice as much should get twice as many soldiers), using the formula S(n) = round( n*100/55) (55 being the total value of all the castles). Then, I removed one soldier from castles 1-4, and added one soldier to castles 7-10, specifically to crush the mirror strategy."
1,3,4,6,8,12,14,16,17,19,
1,3,4,6,8,10,13,19,36,0,"Other folks will load up most on 10, then 9, then 8. By ignoring 10, I have a greater chance of winner the others."
1,3,3,9,12,19,16,17,20,0,"Simulations. I isolated a couple of common strategies that I would expect people to use, generated a thousand variations of each of those strategies, posted those soldier in their castles, and then threw thousands of random combinations of troops at the castles to see which combination did best on average. I have no idea if it will work, but hypothetically it should perform reasonably well. "
1,3,3,3,3,15,2,34,34,2,
1,3,2,4,8,20,26,34,1,1,"Avoid 9 and 10, defeat distributions like 34-33-33 and 25-25-25-25"
1,3,1,1,20,21,21,30,1,1,"7 and 8 are the most critical castles. Between 4 and 7 castles are needed in total (1-7 to 1+8-10). By concentrating on 5-8, it concentrates forces and may benefit from any abandoned castles fights."