forked from salilab/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrossValidate.py
1246 lines (1181 loc) · 53.7 KB
/
crossValidate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
SOAP cross vailiation and bayesian predictive densitites module.
"""
from scorer import *
from sampling import *
import filelock
class k2cv(object):
"""
Cross validate base class
"""
def __init__(self,spsfo=None,model=[]):
if model:
so=scorer(model=model)
spsfo=optimizer(scorer=so)
self.spsfo=copy.deepcopy(spsfo)
self.ospsfo=spsfo
self.model=spsfo.scorer.model
if spsfo:
self.sample=spsfo.scorer.get_sample()
else:
self.sample=[]
self.nots=2
def partfunc(self,osample,k,i):
sample=copy.copy(osample)
sl=len(sample)/k
re=len(sample)%k
random.seed(i*1234)
random.shuffle(sample)
ci=0
samplelist=[]
for i in range(0,k):
if i<re:
ll=sl+1
else:
ll=sl
samplelist.append(sample[ci:ci+ll])
ci=ci+ll
return samplelist
def evalfunc(self,sample,parvalue):
#model should be a dictionary defines the type of the model,the parameters, the initial value of parameters, the value range
#model={type:;par:;parvalue:;parrange:;parsearchbins:;}
if not sample:
return 0
self.spsfo.scorer=self.testscorer
validationresult=self.spsfo.calc_score_point(parvalue)
return validationresult
def trainfunc(self,sample):
self.spsfo.scorer=copy.deepcopy(self.ospsfo.scorer)
[self.spsfo.scorer,self.testscorer]=self.spsfo.scorer.get_ds_part(sample)
trainresulttask=self.spsfo.multi_optimizer_cluster()#nspo.optimize()[0:2]#
return trainresulttask
def process_cv_result(self,resultlist):
aresult=[]
# pdb.set_trace()
for result in resultlist:
tperc=0
perc=0
for item in result:
try:
tperc=tperc+item[0][1]
perc=perc+item[1]
except Exception,e:
traceback.print_exc()
pdb.set_trace()
tperc=tperc/len(result)
perc=perc/len(result)
aresult.append([tperc,perc])
return aresult
def pickfunc(self,cvresult):
pass
def cross_validation_single_run(self,input):
if len(input[0])==0:
return []
trainedresulttask=self.trainfunc(input[0])
return tasklist(tasklist=[trainedresulttask],afterprocessing=self.single_run_after_processing,other=copy.deepcopy(input[1]))
def single_run_after_processing(self,trainedresult,tasklist=[],other=[]):
testresult=self.evalfunc(other,trainedresult[0])
return [trainedresult,testresult]
def cross_validation_single_model(self,input):
k=input['k']
sample=input['sample']
testsample=input['testsample']
modellist=[]
resultlist=[]
trainresultlist=[]
inputlist=[]
for i in range(0,k):
samplelist=self.partfunc(sample,2,i)
inputlist.append([samplelist[0],samplelist[1]])
inputlist.append([samplelist[1],samplelist[0]])
inputlist.append([sample,testsample])
#if self.spsfo.scorer.model['cvm'].startswith('parallel'):
# srtask=task(self.env).parallel_local_withreturn(self.cross_validation_single_run,inputlist,len(inputlist))
#else:
srtask=task().serial_local(self.cross_validation_single_run,inputlist)#parallel_local_withreturn,10
return tasklist(tasklist=srtask)
def get_test_sample(self,sample,testperc=0,testsample=[]):
if testperc:
return self.spsfo.scorer.get_sample(perc=testperc)
else:
trainsample=[]
for item in sample:
if not item in testsample:
trainsample.append(item)
return [testsample,trainsample]
def cross_validation_with_test(self,testsample=[],testperc=0):
sample=self.sample
#should call this function to do cross validation under every circustance
testsample,trainsample=self.get_test_sample(sample,testperc,testsample)
input={'k':self.model['cvk'],'sample':sample,'testsample':testsample}
srtask=self.cross_validation_single_model(input)
self.testsample=testsample
return tasklist(tasklist=[srtask],afterprocessing=self.analyze_cv)
def analyze_cv(self,rresultlist,tasklist=[],other=[]):
resultlist=[]
testresult=[]
for result in rresultlist:
if 1:
testresult.append(result[-1])
trainresult=result[:-1]
resultlist.append(trainresult)
return [resultlist,self.process_cv_result(resultlist), testresult]
def load_optarraylist(self,path):
cr=scipy.io.loadmat(path+'cvresult.mat')
self.optarraylist=[]
rk=[item for item in cr if item.startswith('a')]
for i in range(0,len(rk)):
key='a'+str(i)
na=cr[key]
nref=[]
for i in range(0,len(na)):
nref.append(list(na[i]))
nref=squeeze_list(nref)
na=list2array(nref)
self.optarraylist.append(na)
def combine_optimization_results(self,optresultlist):
#analyze the best result from different runs
na=np.zeros([len(optresultlist),len(optresultlist[0])])
optarraylist=[]
for i in range(len(optresultlist)):
item=optresultlist[i]
for j in range(len(item)):
na[i,j]=item[j][:,-1].max()
optarraylist.append(np.vstack(item))
self.optarraylist=optarraylist
self.optstats=na
print self.optstats
self.statsstr='('+str(self.optstats[-1].min())+' '+str(self.optstats[-1].max())+') '+str(self.optstats[-1].mean())+u"\u00B1"+str(self.optstats[-1].std())
def get_scorer_list(self):
if 'filter' in self.spsfo.scorer.model:
fl=self.spsfo.scorer.model['filter']
cvmodel=pickle.load(open(fl['filterpath']))
if len(cvmodel['allresult'])!=len(self.inputlist):
raise Exception('The model filter can not be applied to this cv case, number of tries different')
self.scorerlist=[]
for i in range(0,len(self.inputlist)):
scorer1,scorer2=self.spsfo.scorer.get_ds_part(self.inputlist[i][0])
if 'filter' in self.spsfo.scorer.model:
scorer1.loadfilter=[{'criteria':fl['criteria'],'parvalue':cvmodel['allresult'][i]['bestpar']}]
self.scorerlist.append([scorer1,scorer2])
def clustering_optimization_results(self):
parlist=[]
resultlist=[]
for optarray in self.optarraylist:
ra,nay=self.spsfo.get_rrf(optarray)
parlist.append(ra)
resultlist.append(nay)
self.clusters=cvclustering(parlist,resultlist,self.scorerlist,clustermethod=self.model['clustermethod'])
self.clusters.analyze()
sd={'lastone':lastone,'parlist':parlist,'resultlist':resultlist,'testresultlist':testresultlist,
'bestpar':bestpar, 'bestresult':resultlist[0],'testresult':testscorer.assess(bestpar),
'fulltestresult':testscorer.assess(bestpar,report='full'),
'pd':pd/k,'rlpd':rlpd}
def analyze_clustering_results(self):
if self.withlastone:
self.finaloptresult=self.rdlist[-1]['bestresult']
self.finaloptpar=self.rdlist[-1]['bestpar']
if 'finalbestresult' in self.rdlist[-1]:
self.finalfinaloptresult=self.rdlist[-1]['finalbestresult']
self.finalfinaltestresult=self.rdlist[-1]['finaltestresult']
else:
self.finalfinaloptresult=0
self.finalfinaltestresult=0
tn=len(self.rdlist)-1
self.lasttestresult=self.rdlist[-1]['testresult']
self.bestmodelresult=self.rdlist[-1]['bestresult']
else:
self.finaloptresult=0
self.finaloptpar=[]
tn=len(self.rdlist)
self.lasttestresult=0
self.bestmodelresult=[]
self.finalfinaloptresult=0
self.finalfinaltestresult=0
optlist=np.zeros(tn)
testlist=np.zeros(tn)
finaloptlist=np.zeros(tn)
finaltestlist=np.zeros(tn)
pdlist=np.zeros(tn)
rlpdlist=np.zeros(tn)
for i in range(0,tn):
optlist[i]=self.rdlist[i]['bestresult']
testlist[i]=self.rdlist[i]['testresult']
if 'finalbestresult' in self.rdlist[-1]:
finaloptlist[i]=self.rdlist[i]['finalbestresult']
finaltestlist[i]=self.rdlist[i]['finaltestresult']
else:
finaloptlist[i]=0
finaltestlist[i]=0
pdlist[i]=self.rdlist[i]['pd']
rlpdlist[i]=self.rdlist[i]['rlpd']
self.optresults=optlist
self.testresults=testlist
self.optmean=optlist.mean()
self.optstd=optlist.std()/np.sqrt(tn)
self.finaloptmean=finaloptlist.mean()
self.finaloptstd=finaloptlist.std()/np.sqrt(tn)
self.pdsum=pdlist.mean()
self.rlpdmean=rlpdlist.mean()
self.testmean=testlist.mean()
self.teststd=testlist.std()/np.sqrt(tn)
self.finaltestmean=finaltestlist.mean()
self.finalteststd=finaltestlist.std()/np.sqrt(tn)
self.resultstr=u"{5:.5f},{6:.3f}, {0:2.3f}\u00B1{1:2.3f}, {2:2.3f}\u00B1{3:2.3f}, {4:2.3f}, {7:2.3f}__{8:2.3f}\u00B1{9:2.3f}, {10:2.3f}\u00B1{11:2.3f}, {12:2.3f}, {13:2.3f} ".format(
self.optmean,self.optstd,self.testmean,self.teststd,self.finaloptresult,self.pdsum,self.rlpdmean,self.lasttestresult, self.finaloptmean,self.finaloptstd,self.finaltestmean,self.finalteststd,self.finalfinaloptresult,self.finalfinaltestresult)
self.resultarray=np.array([self.optmean,self.optstd,self.testmean,self.teststd,self.finaloptresult,self.pdsum,self.lasttestresult, self.finaloptmean,self.finaloptstd,self.finaltestmean,self.finalteststd,self.finalfinaloptresult,self.finalfinaltestresult,self.rlpdmean])
print self.resultstr
def save_optimization_results(self):
bdir=runenv.basedir+'results/'
os.chdir(bdir)
tdir=bdir+'_'.join(self.spsfo.scorer.bmtype['dslist'])
if not os.path.isdir(tdir):
os.mkdir(tdir)
tdir=tdir+'/'+self.spsfo.scorer.bmtype['criteria']
if not os.path.isdir(tdir):
os.mkdir(tdir)
self.logdir=tdir+'/'
tdir=tdir+'/runs/'
if not os.path.isdir(tdir):
os.mkdir(tdir)
cdp=tdir+'/'+self.rundir+'-'+self.resultstr.replace(u"\u00B1","+").replace(', ','_')+'/'
os.mkdir(cdp)
os.chdir(cdp)
#self.clusters.figpath=cdp
self.logpath=cdp
#mypickle().dump(self.clusters, 'figinput')
fh=open('cvmodel.pickle','w')
pickle.dump({'model':self.spsfo.scorer.originalmodel, 'runtime':self.task.runduration,
'inputlist':self.inputlist,'allresult':self.rdlist,'originalresult':self.originalresult},fh)
fh.close()
#self.clusters.dump('cvcluster.pickle')
print os.system('cp '+sys.path[1]+'/'+sys.argv[0]+' ./')
if self.withlastone:
self.bestmodel=self.spsfo.scorer.build_model(self.finaloptpar)
fh=open('bestmodel.pickle','w')
pickle.dump(self.bestmodel,fh)
fh.close()
fh=open('bestmodel','w')
fh.write(any2str(self.bestmodel))
fh.close()
fh=open('bestmodelresult','w')
fh.write(str(self.bestmodelresult)+'\n'+str(self.rdlist[-1]['fulltestresult']))
fh.close()
else:
self.bestmodel=self.spsfo.scorer.originalmodel
fh=open('bestmodel.pickle','w')
pickle.dump(self.bestmodel,fh)
fh.close()
fh=open('bestmodel','w')
fh.write(any2str(self.bestmodel))
fh.close()
self.write2logshelve()
self.write2db()
return self.resultstr
def plot_bestpar(self):
par=self.finaloptpar
bestmodel=self.bestmodel
so=scorer(model=bestmodel)
so.assess(par)
plt.clf()
for i in len(so.model['scorers']):
if so.model['scorers']['type']!='sf':
continue
sfo=so.scorerlist[i]
plt.plot(sfo.sfv)
def write2logshelve(self,model=None):
if model==None:
model=self.spsfo.scorer.originalmodel
os.chdir(self.logdir)
with filelock.FileLock("log.shelve", timeout=100, delay=2) as lock:
print("Lock acquired.")
resultdictlog=shelve.open(self.logdir+'log.shelve')
del model['str']
model['str']=any2str(model)
resultdictlog[model['str']]=[self.resultarray,self.resultstr,self.rundir,self.bestmodel,self.bestmodelresult,self.logpath]
resultdictlog.close()
print("lock released")
def modelinlog(self,model=None):
if model==None:
model=self.spsfo.scorer.originalmodel
os.chdir(self.logdir)
if 'str' in model:
del model['str']
model['str']=any2str(model)
with filelock.FileLock("log.shelve", timeout=100, delay=2) as lock:
print("Lock acquired.")
if not os.path.isfile(self.logdir+'log.shelve'):
nmr=[]
else:
resultdictlog=shelve.open(self.logdir+'log.shelve')
if model['str'] in resultdictlog:
nmr=resultdictlog[model['str']]
#ko=k2cvcluster()
#rundirname=[item for item in os.listdir(os.path.join(self.baselogdir,'runs')) if item.startswith(nmr[2])][0]
#ko.load_fromlogdir(os.path.join(self.baselogdir,'runs',rundirname))
#nmr[0]=ko.resultarray
else:
nmr=[]
resultdictlog.close()
print("lock released")
if len(nmr)==0:
return False
else:
self.resultarray,self.resultstr,self.rundir,self.bestmodel,self.bestmodelresult,self.logpath=nmr
return True
def write2db(self):
#create the database if non exist
import sqlite3
class integerList(list):
pass
class textList(list):
pass
class realList(list):
pass
class anyList(list):
pass
def adapt_slist(s):
return '; '.join([str(item) for item in s])
def adapt_anylist(textList):
return '; '.join([pickle.dumps(item) for item in textList])
def convert_integerList(s):
return map(int, s.split("; "))
def convert_realList(s):
return map(float, s.split("; "))
def convert_textList(s):
return s.split("; ")
def convert_anyList(s):
return map(pickle.loads, s.split("; "))
sqlite3.register_adapter(integerList, adapt_slist)
sqlite3.register_converter("integerlist", convert_integerList)
sqlite3.register_adapter(realList, adapt_slist)
sqlite3.register_converter("reallist", convert_realList)
sqlite3.register_adapter(textList, adapt_slist)
sqlite3.register_converter("textlist", convert_textList)
sqlite3.register_adapter(anyList, adapt_anylist)
sqlite3.register_converter("anylist", convert_anyList)
con = sqlite3.connect(runenv.resultdbpath,detect_types=sqlite3.PARSE_DECLTYPES)
conn= con.cursor()
#self.optmean,self.optstd,self.testmean,self.teststd,
#self.finaloptresult,self.lasttestresult,
#self.finaloptmean,self.finaloptstd,self.finaltestmean,self.finalteststd,
#self.finalfinaloptresult,self.finalfinaltestresult,
#self.rlpdmean,self.pdsum,
conn.execute("""create table if not exists Result (result TEXT,
dslist textlist,type TEXT,criteria TEXT, bm TEXT,combine TEXT,
filters TEXT, criteria2 TEXT, scorers integerlist, optmethod INTEGER,
optmean REAL, optstd REAL,testmean REAL, teststd REAL, finaloptresult REAL,finaltestresult REAL,
optmean2 REAL, optstd2 REAL,testmean2 REAL, teststd2 REAL, finaloptresult2 REAL,finaltestresult2 REAL,
pdresultmean REAL, pd REAL,bestpar reallist,runnum INTEGER primary key);""")
conn.execute("""create table if not exists Scorers (scoind INTEGER, runnum INTEGER)""")
conn.execute("""create table if not exists OptMethod (optind INTEGER unique, optmethod TEXT primary key, sml TEXT, cvk INTEGER,
repeat INTEGER, testperc REAL,fold INTEGER);""")
conn.execute("""create table if not exists Scorer (scoind INTEGER unique, scorer any primary key, type TEXT, features TEXT,
sftype TEXT, par TEXT, searchpar TEXT, parvalue TEXT, searchparvalue TEXT, ratio TEXT,searchratio TEXT,
bm TEXT, pdbset TEXT, pm TEXT, genmethod TEXT);""")
conn.execute("""create table if not exists Counter (numoptm INTEGER, numsco INTEGER, numres INTEGER)""")
numofcount=conn.execute("""select count(*) from Counter""").fetchall()[0][0]
if numofcount==0:
conn.execute("insert into Counter values (1000000,2000000,3000000)")
elif numofcount>1:
print "more than 1 line of count"
pdb.set_trace()
if self.spsfo==None:
m=self.originalmodel
else:
m=self.spsfo.scorer.originalmodel
optList=[]
for key in ['sml','cvk','repeat','testperc','fold']:
if key in m:
optList.append(m[key])
else:
optList.append(None)
optList[0]=any2str(optList[0])
optList.insert(0,any2str(optList))
conn.execute("""SELECT *
FROM OptMethod
WHERE optmethod=?;""",(optList[0],))
rows=conn.fetchall()
if len(rows)>1:
print "duplicate in database"
pdb.set_trace()
elif len(rows)==1:
if rows[0][1:]!=tuple(optList):
print "duplicate but not matching optmethod"
pdb.set_trace()
optList.insert(0, rows[0][0])
elif len(rows)==0:
conn.execute('update Counter set numoptm=numoptm+1')
optind=conn.execute('Select numoptm from Counter').fetchall()[0][0]
optList.insert(0,optind)
conn.execute('INSERT INTO OptMethod values (?,?,?,?,?,?,?)',tuple(optList))
for search in m['searches']:
search['object'][search['key']]=['search',len(search['object'][search['key']]),any2str(search['InitialGenerator'])]
allScorers=[]
for scorer in m['scorers']:
scoList=[]
scoList.append(any2str(scorer))
for key in ['type','features','sftype','par','parvalue','ratio','bm','pdbset','pm','genmethod']:
if key in scorer:
if isinstance(scorer[key],list) and len(scorer[key])>0 and scorer[key][0]=='search':
scoList.append(any2str(scorer[key][1]))
scoList.append(scorer[key][2])
elif key in ['par','parvalue','ratio']:
scoList.append(any2str(scorer[key]))
scoList.append(None)
else:
scoList.append(any2str(scorer[key]))
elif key in ['par','parvalue','ratio']:
scoList.append(None)
scoList.append(None)
else:
scoList.append(None)
conn.execute("""SELECT *
FROM Scorer
WHERE scorer=?""",(scoList[0],))
rows=conn.fetchall()
if len(rows)>1:
print "duplicate in database"
pdb.set_trace()
elif len(rows)==1:
if rows[0][1:]!=tuple(scoList):
print "duplicate but not matching scorer"
pdb.set_trace()
scoList.insert(0, rows[0][0])
elif len(rows)==0:
conn.execute('update Counter set numsco=numsco+1')
scoind=conn.execute('Select numsco from Counter').fetchall()[0][0]
scoList.insert(0,scoind)
conn.execute('INSERT INTO Scorer values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)',tuple(scoList))
allScorers.append(scoList[0])
resList=[]
resList.append(any2str(m))
resList.append(textList(m['bmtype']['dslist']))
for key in ['type','criteria','bm','combine','filters','finalcriteria']:
if key in m['bmtype']:
resList.append(any2str(m['bmtype'][key]))
else:
resList.append(None)
resList.append(textList(allScorers))
resList.append(optList[0])
resList.extend([self.optmean,self.optstd,self.testmean,self.teststd,self.finaloptresult,self.lasttestresult,
self.finaloptmean,self.finaloptstd,self.finaltestmean,self.finalteststd,self.finalfinaloptresult,self.finalfinaltestresult,
self.rlpdmean,self.pdsum, self.rdlist[-1]['bestpar'],int(self.rundir)])
if isinstance(resList[-2],np.float):
resList[-2]=[resList[-2]]
resList[-2]=realList(resList[-2])
if isinstance(resList[-2][0],np.ndarray):
nl=realList()
for i in range(len(resList[-2][0])):
nl.append(resList[-2][0][i])
resList[-2]=nl
print resList[-2]
conn.execute("""SELECT *
FROM Result
WHERE runnum=?""",(resList[-1],))
rows=conn.fetchall()
if len(rows)>1:
print "duplicate in database"
elif len(rows)==1:
for i in range(len(resList)):
try:
if np.isnan(resList[i]):
resList[i]=None
except:
continue
if rows[0][:-2]!=tuple(resList)[:-2] or rows[0][-1]!=tuple(resList)[-1] or (not np.allclose(rows[0][-2],resList[-2])):
print "duplicate but not matching result"
pdb.set_trace()
elif len(rows)==0:
for sc in allScorers:
conn.execute('INSERT INTO Scorers values (?,?)',(sc,int(self.rundir)))
conn.execute('INSERT INTO Result values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)',tuple(resList))
con.commit()
con.close()
class k2cvlocal(k2cv):
"""
Cross validate a model locally // may not work on its own anymore
"""
def trainfunc(self,sample):
#pdb.set_trace()
self.spsfo.scorer=copy.deepcopy(self.ospsfo.scorer)
[self.spsfo.scorer,self.testscorer]=self.spsfo.scorer.get_ds_part(sample)
trainresult=self.spsfo.multi_optimizer_local()#nspo.optimize()[0:2]#
return trainresult
def cross_validation_single_model(self,input):
k=input['k']
sample=input['sample']
testsample=input['testsample']
modellist=[]
resultlist=[]
trainresultlist=[]
inputlist=[]
for i in range(0,k):
samplelist=self.partfunc(sample,2,i)
inputlist.append([samplelist[0],samplelist[1]])
inputlist.append([samplelist[1],samplelist[0]])
inputlist.append([sample,testsample])
#if self.spsfo.scorer.model['cvm'].startswith('parallel'):
# srtask=task(runenv).parallel_local_withreturn(self.cross_validation_single_run,inputlist,len(inputlist))
#else:
srtask=task().serial_local(self.cross_validation_single_run,inputlist)#parallel_local_withreturn,10
return srtask
def cross_validation_single_run(self,input):
if len(input[0])==0:
return []
trainedresult=self.trainfunc(input[0])
return self.single_run_after_processing(trainedresult)
def cross_validation_with_test(self,testsample=[],testperc=0):
sample=self.sample
#should call this function to do cross validation under every circustance
testsample,trainsample=self.get_test_sample(sample,testperc,testsample)
input={'k':self.model['cvk'],'sample':sample,'testsample':testsample}
self.testsample=testsample
srtask=self.cross_validation_single_model(input)
return self.analyze_cv([srtask])
class k2cvcluster(k2cvlocal):
"""
Cross validate a model on SGE cluster
"""
def __init__(self,spsfo=None,model=[], initialize=False,logpath=''):
self.model=model
self.spsfo=spsfo
self.runspernode=1
self.runpath='./'
self.statsstr=''
self.testperc=-1
self.testsample=[]
self.rid=0
self.rsn=0
self.repeat=1
if logpath:
self.load_fromlogdir(logpath)
if initialize:
self.initialize_model()
if runenv.hostn==0 and len(model)>0:
try:
bdir=os.path.join(runenv.basedir, 'results')
tdir=os.path.join(bdir,
'_'.join(self.model['bmtype']['dslist']))
if not os.path.isdir(tdir):
os.mkdir(tdir)
tdir=os.path.join(tdir, self.model['bmtype']['criteria'])
if not os.path.isdir(tdir):
os.mkdir(tdir)
self.logdir=tdir+'/'
except:
traceback.print_exc()
pdb.set_trace()
def initialize_scorer(self):
so=scorer(model=self.originalmodel)
spsfo=optimizer(scorer=so)
self.spsfo=spsfo
self.model=self.originalmodel
self.initialize_model()
self.prepare_cross_validation_sample()
self.get_scorer_list()
def load_fromlogdir(self,lp=''): #note that repeat is ignored here
cvmodel=pickle.load(open(os.path.join(lp,'cvmodel.pickle')))
self.rdlist=cvmodel['allresult']
if 'testperc' in cvmodel['model']:
self.withlastone=True
else:
self.withlastone=False
self.originalmodel=cvmodel['model']
self.spsfo=None
if 0:
bm=pickle.load(open(os.path.join(lp,'bestmodel.pickle')))
if 'repeat' in bm:
bm['repeat']=1
so=scorer(model=bm)
spsfo=optimizer(scorer=so)
self.spsfo=spsfo
self.model=bm
self.initialize_model()
self.prepare_cross_validation_sample()
self.analyze_clustering_results()
#self.rundir=os.path.split(lp)[-1].split('-')[0]
def initialize_model(self):
if self.model!=[]:
so=scorer(model=self.model)
self.spsfo=optimizer(scorer=so)
if 'testperc' in self.model:
self.testperc=self.model['testperc']
if 'testsample' in self.model:
self.testsample=self.model['testsample']
if self.spsfo:
#self.ospsfo=optimizer(scorer=self.spsfo.scorer)
self.sample=self.spsfo.scorer.get_sample()
self.model=self.spsfo.scorer.model
else:
self.sample=[]
def cross_validation_single_run(self,input):
pass
def cross_validation_single_model(self,input):
k=input['k']
sample=input['sample']
modellist=[]
resultlist=[]
trainresultlist=[]
inputlist=[]
parnum=2
if 'fold' in self.model:
parnum=self.model['fold']
for i in range(0,k):
samplelist=self.partfunc(sample,parnum,i)
for j in range(parnum):
trainlist=[]
for m in range(parnum):
if m!=j:
trainlist=trainlist+samplelist[m]
inputlist.append([trainlist,samplelist[j]])
if 'testsample' in input:
inputlist.append([sample,input['testsample']])
if self.repeat>1:
self.inputlist=[]
for i in range(self.repeat):
self.inputlist=self.inputlist+inputlist
else:
self.inputlist=inputlist
self.get_scorer_list()
self.distribute_runs()
if "initialmodelpath" in self.model:
self.get_initial_values_from_path(self.model['initialmodelpath'])
def get_initial_values_from_path(self,path):
if isinstance(path,str):
path=[path]
csp=0
for currentpath in path:
cvm=pickle.load(open(os.path.join(currentpath,'cvmodel.pickle')))
om=cvm['model']
#if om['cvk']!=self.model['cvk'] or ('fold' in self.model and om['fold']!=self.model['fold']) or ('testperc' in self.model and om['testperc']!=self.model['testperc']):
# raise Bugs('Models does not match, can not load the model as initial conditions')
#match models How to???
if 'initialpars' in self.model and self.model['initialpars']=='best':
parname='bestrepna'
else:
parname='repna'
if len(cvm['allresult'])<(len(self.scorerlist)/self.repeat):
rdlist=[]
for i in range(len(self.scorerlist)/self.repeat):
k=i%len(cvm['allresult'])
crd=cvm['allresult'][k]
a=range(crd[parname].shape[0])
random.shuffle(a)
crd[parname]=crd[parname][a,:]
rdlist.append(crd)
else:
rdlist=cvm['allresult'][:len(self.scorerlist)/self.repeat]
oso=scorer(model=om)
for i in range(len(self.scorerlist)/self.repeat):
repna=rdlist[i][parname]
sp=0
trn=self.runsperscorer*self.repeat/repna.shape[0]+1
repna=np.vstack([repna for kk in range(trn)])[0:self.runsperscorer*self.repeat,:]
for j in range(self.repeat):
so=self.scorerlist[j*len(rdlist)+i][0]
ep=sp+self.runsperscorer
if len(so.initialvalues)==0:
so.initialvalues=np.zeros((self.runsperscorer,len(self.spsfo.scorer.parvalues)))-9999
csptemp=self.get_parvalue_from_rf(so.initialvalues,om,repna[sp:ep,:-1],oso,sp=csp)
sp=sp+self.runsperscorer
csp=csptemp
print "please check the initialvalue performance"
self.spsfo.scorer.initialvalues=so.initialvalues
self.spsfo.get_initial_value()
print self.spsfo.scorer.assess(self.spsfo.bestpar)
def get_parvalue_from_rf(self,newpar,originalmodel,originalpar,oso,sp=0):
#originalpar is the list containing all the search pars, we need to somehow convert the original pars to the pars for the new model
#pdb.set_trace()
parshape=originalpar.shape
#the scorers from the original model and current model are matched 1 by 1.
ospi=0 # original model position
for spi in range(sp,len(self.spsfo.scorer.model['scorers'])): #current model posiiotn
print spi
#if spi==(len(self.spsfo.scorer.model['scorers'])-2):
# pdb.set_trace()
if len(self.spsfo.scorer.scorersearchlist[spi])==0:
continue
bins=[]
if 'par' in self.model['scorers'][spi]:
for j in range(parshape[0]):
bins.append(self.model['scorers'][spi]['par'])
#skip original model to the first search position
while ospi<len(originalmodel['scorers']):
if len(oso.scorersearchlist[ospi])>0:
break
else:
ospi+=1
if ospi==len(originalmodel['scorers']):
spi-=1
break
setvalues=False
for si in self.spsfo.scorer.scorersearchlist[spi]:
currentsearch=self.model['searches'][si]
if currentsearch['key']=='ratio':
for si2 in oso.scorersearchlist[ospi]:
if originalmodel['searches'][si2]['key']=='ratio':
if np.any(newpar[:,self.spsfo.scorer.searchlistspos[si]]!=-9999):
print "resetting the values twice"
for j in range(parshape[0]):
newpar[j,self.spsfo.scorer.searchlistspos[si]]=originalpar[j,oso.searchlistspos[si2]]
setvalues=True
elif currentsearch['key']=='par':
setbins=False
for si2 in oso.scorersearchlist[ospi]:
if originalmodel['searches'][si2]['key']=='par' and ((self.spsfo.scorer.searchlistspos[si+1]-self.spsfo.scorer.searchlistspos[si])==(oso.searchlistspos[si2+1]-oso.searchlistspos[si2])):
setbins=True
bins=[]
if np.any(newpar[:,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]!=-9999):
print "resetting the values twice"
pdb.set_trace()
for j in range(parshape[0]):
newpar[j,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]=originalpar[j,oso.searchlistspos[si2]:oso.searchlistspos[si2+1]]
bins.append(originalpar[j,oso.searchlistspos[si2]:oso.searchlistspos[si2+1]])
setvalues=True
if setbins==False and len(originalmodel['scorers'][ospi]['par'])==len(self.model['scorers'][spi]['par']):
bins=[]
if np.any(newpar[:,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]!=-9999):
print "resetting the values twice"
pdb.set_trace()
for j in range(parshape[0]):
newpar[j,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]=originalmodel['scorers'][ospi]['par']
bins.append(originalmodel['scorers'][ospi]['par'])
setvalues=True
for si in self.spsfo.scorer.scorersearchlist[spi]:
currentsearch=self.model['searches'][si]
if currentsearch['key']=='parvalue':
for si2 in oso.scorersearchlist[ospi]:
if originalmodel['searches'][si2]['key']=='parvalue':
if np.any(newpar[:,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]!=-9999):
print "resetting the values twice"
pdb.set_trace()
for j in range(parshape[0]):
oso.parvalues=originalpar[j,:]
oso.assign_values2model()
sfmodel=oso.model['searches'][si2]['object']
sfo=sf(**sfmodel)
if self.model['scorers'][spi]['sftype']=='bins':
sfo.bins=sf(**self.model['scorers'][spi]).bins
sfv=np.exp(sfo.get_sf(returnreft=True))
newpar[j,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]=sfv
else:
sfo.bins=[list(bins[j])+[sfo.bins[0][-1]]]
sfv=np.exp(sfo.get_sf(returnreft=True))
newpar[j,self.spsfo.scorer.searchlistspos[si]:self.spsfo.scorer.searchlistspos[si+1]]=sfv[:-1]
setvalues=True
if setvalues:
ospi+=1
if ospi==(len(originalmodel['scorers'])):
break
#pdb.set_trace()
if np.any(newpar==-9999):
print 'Some Initial values are undefined '
print spi
spi+=1
return spi
def distribute_runs(self):
#get runs per node
self.optn=len(self.inputlist) #total number of trials, number of different sets
perruntime=len(self.spsfo.scorer.dsss.ds.sa)/250000.0 #approximate run time in minutes
optin=self.spsfo.scorer.model['runsperscorer']
self.runsperscorer=optin
rsnf=optimizerjobtime/perruntime
if (rsnf+1)>=optin:
self.runspernode=optin
elif rsnf>1:
for i in range(int(np.rint(rsnf+1)),1,-1):
if optin%i==0:
self.runspernode=i
break
self.runspernode=1
if optin%self.runspernode!=0:
raise Exception('Make sure the total number of optimization tries is equal to interger * '+str(self.runspernode))
rpert=optin/self.runspernode #number of runs per trail
k=0
rnl=[]
rnd={}
for i in range(self.optn):
if self.withlastone and i==self.optn-1:
rpn=np.rint(self.runspernode/2.0)#
if rpn<1:
rpn=1
else:
rpn=self.runspernode
rnl.append([])
for j,rj in zip(range(optin),range(1,optin+1)):
nn=j%rpn
if nn==0:
k=k+1 # run number, sort of series number
rnl[i].append(k)
rnd[k]=[i,[rj]]
else:
rnd[k][1].append(rj)
self.nors=k#number of runs
self.runnumlist=rnl
self.runnumdict=rnd
def get_task(self):
if self.modelinlog(self.model):
return 0
else:
self.task=task('','',afterprocessing=self,preparing=self)
return self.task
def prepare_cross_validation_sample(self):
sample=self.sample
#should call this function to do cross validation under every circustance
try:
if 'repeat' in self.model:
self.repeat=self.model['repeat']
if self.testperc>=0:
testsample,trainsample=self.get_test_sample(sample,self.testperc,self.testsample)
self.testsample=testsample
self.trainsample=trainsample
input={'k':self.model['cvk'],'sample':trainsample,'testsample':testsample}
self.withlastone=True
else:
input={'k':self.model['cvk'],'sample':sample}
self.withlastone=False
except:
pdb.set_trace()
self.cross_validation_single_model(input)
#pdb.set_trace()
#preparing task object
def cross_validation_with_test(self):
to=self.get_task()
tasklist(tasklist=[to]).monitor2end()
def runtask_cluster(self,inputcode):
#the individual nodes on the cluster will run this function, if other funtions needs to be run here, chage the code here.
self.rid=int(inputcode)
self.path='./'
self.runpath=runenv.basedir
self.inputcode=str(inputcode)
inputindex=self.runnumdict[int(self.inputcode)][0]
self.runstatus=np.zeros(len(self.runnumlist[inputindex]))
self.spsfo.scorer=self.scorerlist[inputindex][0]
self.testscorer=self.scorerlist[inputindex][1]
self.spsfo.scorerid=inputindex
self.spsfo.jobid=inputcode
self.spsfo.runsperscorer=len(self.runnumlist[inputindex])
res=[]
#initialize the daemon thread array if specified...
if 'thread' in self.spsfo.scorer.model and self.spsfo.scorer.model['thread']>0:
runenv.numofthread=self.spsfo.scorer.model['thread']
runenv.setup_threadpool()
#thread pool setup finished
self.trainscorer=self.scorerlist[inputindex][0]
self.testscorer=self.scorerlist[inputindex][1]
if not os.path.isfile(self.runpath+self.inputcode+'.pickle'):
self.spsfo.starttime=time.time()
self.spsfo.quit=False
for i in self.runnumdict[int(self.inputcode)][1]:
self.spsfo.scorer=load_scorer(self.scorerlist[inputindex][0],self.spsfo.indexlen)
res.append(self.spsfo.runtask_local(i,self.testscorer))
if self.spsfo.quit:
break
print os.system('touch Finished'+str(self.spsfo.scorerid)+'#'+str(self.spsfo.jobid)+'#'+str(int(time.time()-self.spsfo.starttime)))
print os.system('touch '+self.runpath+self.inputcode+'.pickle')
fh=open(self.runpath+self.inputcode+'.pickle','w')
pickle.dump(res,fh)
fh.close()
try:
if self.runnumlist[inputindex][-1]==int(self.inputcode):#last one will collect all the jobs
self.wait_analyze_single_try(inputindex)
#oc.dump(self.inputcode+'.optimizer.pickle')
for i in self.runnumlist[inputindex]:
print 'removing '+str(i)
print os.system('rm '+str(i)+'.pickle')
else:
fh=open(self.inputcode+'.optimizer.pickle','wb')
pickle.dump('Empty',fh)
fh.close()
runsuccess=True
except Exception,e:
print e
print "FatalError : can not write the pickle file"
traceback.print_exc()
runsuccess=False
report_job_runstatus(self.runpath, runsuccess, inputcode, '.optimizer',inputname='runme.py')
return 0
def wait_analyze_single_try(self,inputindex):
print 'waiting for other runs to finish '
#rn=self.check_status_single_try(inputindex)
#while rn>0:
# time.sleep(10)
# rn=self.check_status_single_try(inputindex)
# print os.system('touch '+self.runpath+str(inputindex)+'-waiting-'+str(rn))
rn=self.check_status_single_try(inputindex,type='jobfinished')
while rn>1: #change to rn>1
time.sleep(30)
rn=self.check_status_single_try(inputindex,type='jobfinished')
print 'waiting for others to finish'
#print os.system('touch '+self.runpath+str(inputindex)+'-waitingjob-'+str(rn))
#print os.system('rm '+self.runpath+str(inputindex)+'-waiting*')
return self.analyze_results_for_single_try(inputindex)
def check_status_single_try(self,inputindex,type='pickle'):
k=0
fl=os.listdir(self.runpath)
for i,ii in zip(self.runnumlist[inputindex],range(len(self.runnumlist[inputindex]))):
if type=='pickle':
cfn=str(i)+'.pickle'
elif type=='jobfinished':
cfn='jobfinished.'+str(i)+'.'+str(i)+'.optimizer.tar.gz'
if self.runstatus[ii] or cfn in fl:
self.runstatus[ii]=1
k=k+1
else:
pass
#print os.system('touch '+str(inputindex)+'-waitingnum-'+str(i))
print "Finished run num ("+type+") :"+str(k)
return len(self.runnumlist[inputindex])-k
def analyze_results_for_single_try(self,inputindex):
dl=[]
brl=[]
for i in self.runnumlist[inputindex]:
tnt=3
success=False
while tnt>0 and not success:
tnt=tnt-1
try:
fh=open(self.runpath+str(i)+'.pickle')
ndl=pickle.load(fh)
fh.close()
for nd in ndl: