forked from salilab/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
370 lines (332 loc) · 13.3 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
SOAP feature module for defining MDT features.
"""
import mdt
import mdt.features
from env import *
import os
class feature(object):
"""
Define the features for calculating statistics from structures
:param str features: the string representation of features.
Feature definition mini language::
features => feature [,features]
feature => type, number of bins, #, range, [,#, start value] #start value will be zero if not defined
Example::
features='d30#15'# 0-30A, 0.5 bin size
Types are from MDT:
.. literalinclude:: ../feature.py
:pyobject: feature._gen_single_feature
"""
def __init__(self,features,mlib=None):#mlib does not need to be supplied anymore
self.features=features
#self.preprocess_features()
self.featurelist=[]
self.featurenames=[]
self.mlib=mlib
self.atomclasslib='atmcls-mf.lib'
self.fclist=re.findall('[a-z]{1,4}[0-9\#\-\.]{1,20}',self.features) #feature code list
self.ffclist=copy.deepcopy(self.fclist)
self.frlist=[] # feature range list
self.fdlist=[] # feature bin number list
self.fslist=[] # feature start post list
for i in range(len(self.fclist)):
sfc=self.fclist[i]
if sfc.count('#')==2:
rer=re.search('([a-z]{1,5})([0-9]{1,8})\#([0-9\-\.]{1,5})\#([0-9\-\.]{1,5})',sfc)
self.fclist[i]=rer.group(1)
self.fdlist.append(int(rer.group(2)))
self.frlist.append(float(rer.group(3)))
self.fslist.append(float(rer.group(4)))
if sfc.count('#')==1:
rer=re.search('([a-z]{1,5})([0-9]{1,8})\#([0-9\.]{1,5})',sfc)
self.fclist[i]=rer.group(1)
self.fdlist.append(int(rer.group(2)))
self.frlist.append(float(rer.group(3)))
self.fslist.append(0)
elif sfc.count('#')==0:
self.frlist.append(0)
rer=re.search('([a-z]{1,5})([0-9]{1,8})',sfc)
self.fdlist.append(int(rer.group(2)))
self.fslist.append(0)
if not mlib:
env = runenv.env
#log.minimal()
self.mlib=mdt.Library(env)
def _genfeaturelist(self):
self.read_lib()
for f,r,d,s in zip(self.fclist,self.frlist,self.fdlist,self.fslist):
self.featurelist.append(self._gen_single_feature(f,r,d,s))
return self.featurelist
def _gen_single_feature(self,sfc,end,numofbin,start):
mlib=self.mlib
if end > 0:
ub=mdt.uniform_bins(numofbin, start, (float(end)-float(start))/numofbin)
if sfc[0:2]=='as':
return mdt.features.AtomType(mlib, pos2=True)
elif sfc=='b2':
return mdt.features.FractionalAtomAccessibility(mlib,bins=mdt.uniform_bins(1, 0,0.1)+mdt.uniform_bins(1, 0.1,0.9))
elif sfc=='bs2':
return mdt.features.FractionalAtomAccessibility(mlib,pos2=True, bins=mdt.uniform_bins(1, 0,0.1)+mdt.uniform_bins(1, 0.1,0.9))
elif sfc[0:1]=='a':
return mdt.features.AtomType(mlib)
elif sfc[0:2]=='rs':
return mdt.features.ResidueType(mlib,delta=numofbin, pos2=True)
elif sfc[0:1]=='r':
return mdt.features.ResidueType(mlib,delta=numofbin)
elif sfc in ['dr']:
return mdt.features.ResidueDistance(mlib, bins=ub)
elif sfc[0:1]=='m':
return mdt.features.MainchainConformation(mlib)
elif sfc[0:2]=='ms':
return mdt.features.MainchainConformation(mlib,pos2=True)
elif sfc[0:2]=='ca':
return mdt.features.AngleType(mlib)
elif sfc[0:2]=='cb':
return mdt.features.BondType(mlib)
elif sfc[0:2]=='cd':
return mdt.features.DihedralType(lib)
elif sfc[0:2]=='co':
return mdt.features.BondLength(mlib,bins=ub)
elif sfc[0:2]=='cn':
return mdt.features.Angle(mlib,bins=ub)
elif sfc[0:2]=='ci':
return mdt.features.Dihedral(mlib,bins=ub)
elif sfc[0:2]=='ps':
return mdt.features.PsiDihedral(mlib,bins=ub)
elif sfc[0:2]=='ph':
return mdt.features.PhiDihedral(mlib,bins=ub)
elif sfc in ['d','dca','dmc','dsc','dl']:
return mdt.features.AtomDistance(mlib,bins=ub)
elif sfc=='l':
return mdt.features.ResidueAccessibility(mlib,bins=ub)
elif sfc=='b':
return mdt.features.FractionalAtomAccessibility(mlib,bins=ub)
elif sfc=='bs':
return mdt.features.FractionalAtomAccessibility(mlib,bins=ub,pos2=True)
elif sfc=='ba30':
return mdt.features.AtomAccessibility(mlib,bins=mdt.uniform_bins(30, 0, 0.5))
elif sfc=='bas30':
return mdt.features.AtomAccessibility(mlib,bins=mdt.uniform_bins(30, 0, 0.5),pos2=True)
elif sfc=='s2':
return mdt.features.ResidueIndexDifference(mlib, bins=mdt.uniform_bins(1, -1,1)+mdt.uniform_bins(1, 1,1), absolute=False)
elif sfc=='s33':
return mdt.features.ResidueIndexDifference(mlib, bins=mdt.uniform_bins(1, -10015,10000)+mdt.uniform_bins(31, -15,1)+mdt.uniform_bins(1, 16,100000), absolute=False)
elif sfc in ['dt','dtl']:
return mdt.features.TupleDistance(mlib,bins=ub)
elif sfc=='g':
return mdt.features.TupleAngle1(mlib,bins=ub)
elif sfc=='gs':
return mdt.features.TupleAngle2(mlib,bins=ub)
elif sfc=='h':
return mdt.features.TupleDihedral1(mlib,bins=ub)
elif sfc[0]=='t':
return mdt.features.TupleType(mlib)
elif sfc[:2]=='ts':
return mdt.features.TupleType(mlib, pos2=True)
else:
raise Exception('can not find feature '+sfc+' in module feature._gen_single_feature()')
#remember to update feature type and the getlib feature when adding features
def define_feature_type(self,sfc):
if sfc[0] in ['a','t','r'] or sfc[:2] in ['ca','cb','cd']:#bug need fix
return 0 #independent feature
elif sfc[0] in ['d','b','s','g','h','l','m','c','p']:
return 1
else:
raise Exception('The feature type of '+sfc+' is undefined in feature.define_feature_type()')
def get_lib(self):
if self.features in ['posescore']:
return 'atmcls-plas.lib'
if re.search('dl|al',self.features):
return 'atmcls-plas.lib'
elif re.search('tl|dtl',self.features):
return 'dicls-lig.lib'
elif re.search('dca',self.features):
return 'caatm.lib'
elif re.search('dmc',self.features):
return 'atmcls-mc.lib'
elif re.search('dsc',self.features):
return 'atmcls-sc.lib'
elif re.search('cn',self.features):
return 'anggrp.lib'
elif re.search('co',self.features):
return 'bndgrp.lib'
elif re.search('ci',self.features):
return 'impgrp.lib'
elif self.features[0] in ['h','g','t'] or self.features[0:2] in ['gs','dt']:
return 'dicls-all.lib'
else:
return 'atmcls-mf.lib'
def issubset(self, f2):
shrinkindex=[[] for item in f2.fclist]
permuteindex=[]
nclist=[c2 for c2 in f2.fclist if c2 in self.fclist]
for f,r,d,s,i in zip(self.fclist,self.frlist,self.fdlist,self.fslist,range(len(self.fclist))):
if not f in f2.fclist:
return []
fi=f2.fclist.index(f)
si=self.issubset_singlefeature(r,d,s,f2.frlist[fi],f2.fdlist[fi],f2.fslist[fi])
if len(si)==0:
return []
else:
permuteindex.append(nclist.index(f))
shrinkindex[fi]=si
return [shrinkindex,permuteindex]
def issubset_singlefeature(self,r,d,s,r2,d2,s2):
if r==0:
return [0]
bs1=(float(r)-s)/d
bs2=(float(r2)-s2)/d2
br=np.rint(bs1/bs2)
if np.allclose(float(br),bs1/bs2) and s2<=s and r2>=r:
sb=(float(s)-s2)/bs2
eb=(float(r)-s2)/bs2
sbn=np.rint(sb)
ebn=np.rint(eb)
if np.allclose(sb,sbn) and np.allclose(eb,ebn):
return range(int(sbn),int(ebn)+1,int(br))
else:
return []
else:
return []
def get_featurelist(self):
if self.featurelist:
return self.featurelist
featurelist=self._genfeaturelist()
self.featurelist=featurelist
return featurelist
def get_dimension(self):
self.get_featurelist()
return len(self.featurelist)
def get_all_bins_centers(self):
featurelist=self.get_featurelist()
allbins=[]
#pdb.set_trace()
for pos in range(0,self.get_dimension()):
allbins.append(self.get_bin_centers(pos))
return allbins
def get_featurenames(self):
if self.featurenames:
return self.featurenames
for f in self.get_featurelist():
self.featurenames.append(str(f).split(' ')[0].split('.')[-1])
return self.featurenames
def get_bins(self,pos=0):
featurelist=self.get_featurelist()
#if isinstance(featurelist,(list,tuple)):
# sf=featurelist[pos]
#else:
# sf=featurelist
if self.frlist[pos]>0:
bins=[]
binwidth=(self.frlist[pos]-float(self.fslist[pos]))/self.fdlist[pos]
for i in range(self.fdlist[pos]):
bins.append([self.fslist[pos]+binwidth*i,self.fslist[pos]+binwidth*(i+1)])
return bins
else:
return []
def get_runmem(self):
s=8
for item in self.fdlist:
s=s*(item)
runmem=float(s)/1000000000+0.6
if runmem<0.5:
runmem=0.5
runmem=int(float(runmem)*1000)/1000.0
if 'l' in self.fclist:
runmem=1.5
return runmem
def get_bin_centers(self,pos=0):
bins=self.get_bins(pos)
rp=[]
if len(bins)>0:
for i in range(len(bins)):
rp.append((bins[i][0]+bins[i][1])/2)
return rp
else:
return []
def read_lib(self,mlib=[]):
if mlib:
mlibr=mlib
else:
mlibr=self.mlib
libfile=self.get_lib()
if re.search('dicls',libfile):
mlibr.tuple_classes.read(os.path.join(runenv.libdir, libfile))
else:
mlibr.atom_classes.read(os.path.join(runenv.libdir, libfile))
def issymetry(self):
fn=self.get_featurenames()
tl=[]
dl=[]
for i in range(0,len(self.fdlist)):
if fn[i] in ['AtomType','ResidueType']:
tl.append(fn[i])
dl.append(self.fdlist[i])
if len(tl)>2:
raise Exception('feature.issymetry() don\'t know how to handle features with three typesss')
elif len(tl)<2:
return False
else:
if tl[0]==tl[1] and dl[0]==dl[1]:
return True
else:
print "attention: feature "+self.features+" is not symmetric"
return False
def get_featuretypepos(self):
self.ifp=[]
self.dfp=[]
rl2=[]
for i in range(0,len(self.fclist)):
if self.define_feature_type(self.fclist[i])==1:
self.dfp.append(i)
elif self.define_feature_type(self.fclist[i])==0:
self.ifp.append(i)
return self.ifp, self.dfp
def get_independent_feature(self):
fs=''
for i in self.ifp:
fs=fs+self.ffclist[i]
return fs
def get_feature_names(self):
if len(self.fclist)>1:
raise Exception('we can only get feature names for single feature')
fl=self.get_featurelist()
m=mdt.Table(self.mlib,features=fl)
sl=[]
for bin in m.features[0].bins:
sl.append(bin.symbol)
return sl
class atmsprop(object):
def __init__(self,libfile):
self.vdrd={'C':1.8,'N':1.64,'O':1.46,'S':1.77,'P':1.88,'F':1.56,'Cl':1.74,'Br':1.98,'I':2.09}
self.libfile=libfile
self.atomNameList=self.read_libfile()
self.atomTypeList=[self.get_atomtype(an) for an in self.atomNameList]
self.atomrl=[self.vdrd[at] for at in self.atomTypeList]
def get_atomtype(self,atomname):
if 'Cl' in atomname:
return 'Cl'
for key in self.vdrd:
if key in atomname:
return key
raise exception('atom type not known')
def read_libfile(self):
fh=open(runenv.basedir+'lib/'+self.libfile)
fhc=fh.read()
fh.close()
if 'DBLGRP' in fhc:
agl=[l[8:-1] for l in fhc.split('\n') if l.startswith('DBLGRP')]
elif 'ATMGRP' in fhc:
agl=[l[8:-1] for l in fhc.split('\n') if l.startswith('ATMGRP')]
return [a for a in agl if len(a)>0]
def get_repulsion(self,ind,bins):
atm1ind=ind/len(self.atomTypeList)
atm2ind=ind%len(self.atomTypeList)
radius=self.atomrl[atm1ind]+self.atomrl[atm2ind]
pv=np.zeros(len(bins))
for i in range(len(bins)):
if bins[i]>=radius:
break
pv[i]=np.exp(-0.5*((bins[i]-radius)/0.05)**2)/(0.05*2.51)
return pv