From 4030ee29c8d52121c2b3a52b7a086ab2ecea92d5 Mon Sep 17 00:00:00 2001 From: liuzhiyang <296824673@qq.com> Date: Tue, 4 Aug 2020 11:03:42 +0800 Subject: [PATCH] feat: clang-formate --- .clang-format | 67 ++++ .vscode/settings.json | 6 + {ch2 => ch02}/CMakeLists.txt | 2 +- {ch2 => ch02}/helloSLAM | Bin ch02/helloSLAM.cpp | 8 + {ch2 => ch02}/libHelloSLAM.cpp | 2 +- {ch2 => ch02}/libHelloSLAM.h | 0 {ch2 => ch02}/useHello.cpp | 6 +- {ch3 => ch03}/useEigen/CMakeLists.txt | 0 ch03/useEigen/eigenMatrix.cpp | 105 ++++++ {ch3 => ch03}/useGeometry/CMakeLists.txt | 0 ch03/useGeometry/eigenGeometry.cpp | 60 ++++ .../visualizeGeometry/CMakeLists.txt | 0 {ch3 => ch03}/visualizeGeometry/Readme.txt | 0 ch03/visualizeGeometry/visualizeGeometry.cpp | 132 +++++++ {ch4 => ch04}/useSophus/CMakeLists.txt | 0 ch04/useSophus/useSophus.cpp | 65 ++++ {ch5 => ch05}/imageBasics/CMakeLists.txt | 0 ch05/imageBasics/imageBasics.cpp | 72 ++++ {ch5 => ch05}/imageBasics/ubuntu.png | Bin {ch5 => ch05}/joinMap/CMakeLists.txt | 0 {ch5 => ch05}/joinMap/color/1.png | Bin {ch5 => ch05}/joinMap/color/2.png | Bin {ch5 => ch05}/joinMap/color/3.png | Bin {ch5 => ch05}/joinMap/color/4.png | Bin {ch5 => ch05}/joinMap/color/5.png | Bin {ch5 => ch05}/joinMap/depth/1.pgm | Bin {ch5 => ch05}/joinMap/depth/2.pgm | Bin {ch5 => ch05}/joinMap/depth/3.pgm | Bin {ch5 => ch05}/joinMap/depth/4.pgm | Bin {ch5 => ch05}/joinMap/depth/5.pgm | Bin ch05/joinMap/joinMap.cpp | 88 +++++ {ch5 => ch05}/joinMap/pose.txt | 0 .../ceres_curve_fitting/CMakeLists.txt | 0 .../cmake_modules/CeresConfig.cmake.in | 0 ch06/ceres_curve_fitting/main.cpp | 76 +++++ .../g2o_curve_fitting/CMakeLists.txt | 0 .../cmake_modules/FindG2O.cmake | 0 ch06/g2o_curve_fitting/main.cpp | 127 +++++++ {ch7 => ch07}/1.png | Bin {ch7 => ch07}/1_depth.png | Bin {ch7 => ch07}/2.png | Bin {ch7 => ch07}/2_depth.png | Bin {ch7 => ch07}/CMakeLists.txt | 0 {ch7 => ch07}/cmake_modules/FindCSparse.cmake | 0 {ch7 => ch07}/cmake_modules/FindG2O.cmake | 0 ch07/extra.cpp | 205 +++++++++++ ch07/extra.h | 17 + ch07/feature_extraction.cpp | 90 +++++ ch07/pose_estimation_2d2d.cpp | 156 +++++++++ ch07/pose_estimation_3d2d.cpp | 190 +++++++++++ ch07/pose_estimation_3d3d.cpp | 294 ++++++++++++++++ ch07/triangulation.cpp | 191 +++++++++++ {ch8 => ch08}/LKFlow/CMakeLists.txt | 0 ch08/LKFlow/useLK.cpp | 91 +++++ {ch8 => ch08}/data/data.tar.gz | Bin {ch8 => ch08}/directMethod/CMakeLists.txt | 0 .../directMethod/cmake_modules/FindG2O.cmake | 0 ch08/directMethod/direct_semidense.cpp | 297 ++++++++++++++++ ch08/directMethod/direct_sparse.cpp | 292 ++++++++++++++++ {ch8 => ch08}/directMethod/error.txt | 0 {ch8 => ch08}/directMethod/error_LM.txt | 0 ch2/helloSLAM.cpp | 8 - ch3/useEigen/eigenMatrix.cpp | 103 ------ ch3/useGeometry/eigenGeometry.cpp | 60 ---- ch3/visualizeGeometry/visualizeGeometry.cpp | 133 -------- ch4/useSophus/useSophus.cpp | 64 ---- ch5/imageBasics/imageBasics.cpp | 72 ---- ch5/joinMap/joinMap.cpp | 87 ----- ch6/ceres_curve_fitting/main.cpp | 79 ----- ch6/g2o_curve_fitting/main.cpp | 117 ------- ch7/extra.cpp | 198 ----------- ch7/extra.h | 18 - ch7/feature_extraction.cpp | 84 ----- ch7/pose_estimation_2d2d.cpp | 173 ---------- ch7/pose_estimation_3d2d.cpp | 212 ------------ ch7/pose_estimation_3d3d.cpp | 321 ------------------ ch7/triangulation.cpp | 226 ------------ ch8/LKFlow/useLK.cpp | 91 ----- ch8/directMethod/direct_semidense.cpp | 297 ---------------- ch8/directMethod/direct_sparse.cpp | 289 ---------------- 81 files changed, 2634 insertions(+), 2637 deletions(-) create mode 100644 .clang-format create mode 100644 .vscode/settings.json rename {ch2 => ch02}/CMakeLists.txt (94%) rename {ch2 => ch02}/helloSLAM (100%) create mode 100644 ch02/helloSLAM.cpp rename {ch2 => ch02}/libHelloSLAM.cpp (73%) rename {ch2 => ch02}/libHelloSLAM.h (100%) rename {ch2 => ch02}/useHello.cpp (55%) rename {ch3 => ch03}/useEigen/CMakeLists.txt (100%) create mode 100644 ch03/useEigen/eigenMatrix.cpp rename {ch3 => ch03}/useGeometry/CMakeLists.txt (100%) create mode 100644 ch03/useGeometry/eigenGeometry.cpp rename {ch3 => ch03}/visualizeGeometry/CMakeLists.txt (100%) rename {ch3 => ch03}/visualizeGeometry/Readme.txt (100%) create mode 100644 ch03/visualizeGeometry/visualizeGeometry.cpp rename {ch4 => ch04}/useSophus/CMakeLists.txt (100%) create mode 100644 ch04/useSophus/useSophus.cpp rename {ch5 => ch05}/imageBasics/CMakeLists.txt (100%) create mode 100644 ch05/imageBasics/imageBasics.cpp rename {ch5 => ch05}/imageBasics/ubuntu.png (100%) rename {ch5 => ch05}/joinMap/CMakeLists.txt (100%) rename {ch5 => ch05}/joinMap/color/1.png (100%) rename {ch5 => ch05}/joinMap/color/2.png (100%) rename {ch5 => ch05}/joinMap/color/3.png (100%) rename {ch5 => ch05}/joinMap/color/4.png (100%) rename {ch5 => ch05}/joinMap/color/5.png (100%) rename {ch5 => ch05}/joinMap/depth/1.pgm (100%) rename {ch5 => ch05}/joinMap/depth/2.pgm (100%) rename {ch5 => ch05}/joinMap/depth/3.pgm (100%) rename {ch5 => ch05}/joinMap/depth/4.pgm (100%) rename {ch5 => ch05}/joinMap/depth/5.pgm (100%) create mode 100644 ch05/joinMap/joinMap.cpp rename {ch5 => ch05}/joinMap/pose.txt (100%) rename {ch6 => ch06}/ceres_curve_fitting/CMakeLists.txt (100%) rename {ch6 => ch06}/ceres_curve_fitting/cmake_modules/CeresConfig.cmake.in (100%) create mode 100644 ch06/ceres_curve_fitting/main.cpp rename {ch6 => ch06}/g2o_curve_fitting/CMakeLists.txt (100%) rename {ch6 => ch06}/g2o_curve_fitting/cmake_modules/FindG2O.cmake (100%) create mode 100644 ch06/g2o_curve_fitting/main.cpp rename {ch7 => ch07}/1.png (100%) rename {ch7 => ch07}/1_depth.png (100%) rename {ch7 => ch07}/2.png (100%) rename {ch7 => ch07}/2_depth.png (100%) rename {ch7 => ch07}/CMakeLists.txt (100%) rename {ch7 => ch07}/cmake_modules/FindCSparse.cmake (100%) rename {ch7 => ch07}/cmake_modules/FindG2O.cmake (100%) create mode 100644 ch07/extra.cpp create mode 100644 ch07/extra.h create mode 100644 ch07/feature_extraction.cpp create mode 100644 ch07/pose_estimation_2d2d.cpp create mode 100644 ch07/pose_estimation_3d2d.cpp create mode 100644 ch07/pose_estimation_3d3d.cpp create mode 100644 ch07/triangulation.cpp rename {ch8 => ch08}/LKFlow/CMakeLists.txt (100%) create mode 100644 ch08/LKFlow/useLK.cpp rename {ch8 => ch08}/data/data.tar.gz (100%) rename {ch8 => ch08}/directMethod/CMakeLists.txt (100%) rename {ch8 => ch08}/directMethod/cmake_modules/FindG2O.cmake (100%) create mode 100644 ch08/directMethod/direct_semidense.cpp create mode 100644 ch08/directMethod/direct_sparse.cpp rename {ch8 => ch08}/directMethod/error.txt (100%) rename {ch8 => ch08}/directMethod/error_LM.txt (100%) delete mode 100644 ch2/helloSLAM.cpp delete mode 100644 ch3/useEigen/eigenMatrix.cpp delete mode 100644 ch3/useGeometry/eigenGeometry.cpp delete mode 100644 ch3/visualizeGeometry/visualizeGeometry.cpp delete mode 100644 ch4/useSophus/useSophus.cpp delete mode 100644 ch5/imageBasics/imageBasics.cpp delete mode 100644 ch5/joinMap/joinMap.cpp delete mode 100644 ch6/ceres_curve_fitting/main.cpp delete mode 100644 ch6/g2o_curve_fitting/main.cpp delete mode 100644 ch7/extra.cpp delete mode 100644 ch7/extra.h delete mode 100644 ch7/feature_extraction.cpp delete mode 100644 ch7/pose_estimation_2d2d.cpp delete mode 100644 ch7/pose_estimation_3d2d.cpp delete mode 100644 ch7/pose_estimation_3d3d.cpp delete mode 100644 ch7/triangulation.cpp delete mode 100644 ch8/LKFlow/useLK.cpp delete mode 100644 ch8/directMethod/direct_semidense.cpp delete mode 100644 ch8/directMethod/direct_sparse.cpp diff --git a/.clang-format b/.clang-format new file mode 100644 index 000000000..b2aab193e --- /dev/null +++ b/.clang-format @@ -0,0 +1,67 @@ +--- +BasedOnStyle: Google +AccessModifierOffset: -2 +ConstructorInitializerIndentWidth: 2 +AlignEscapedNewlinesLeft: false +AlignTrailingComments: true +AllowAllParametersOfDeclarationOnNextLine: false +AllowShortIfStatementsOnASingleLine: false +AllowShortLoopsOnASingleLine: false +AllowShortFunctionsOnASingleLine: None +AllowShortLoopsOnASingleLine: false +AlwaysBreakTemplateDeclarations: true +AlwaysBreakBeforeMultilineStrings: false +BreakBeforeBinaryOperators: false +BreakBeforeTernaryOperators: false +BreakConstructorInitializersBeforeComma: true +BinPackParameters: true +ColumnLimit: 120 +ConstructorInitializerAllOnOneLineOrOnePerLine: true +DerivePointerBinding: false +PointerBindsToType: true +ExperimentalAutoDetectBinPacking: false +IndentCaseLabels: true +MaxEmptyLinesToKeep: 1 +NamespaceIndentation: None +ObjCSpaceBeforeProtocolList: true +PenaltyBreakBeforeFirstCallParameter: 19 +PenaltyBreakComment: 60 +PenaltyBreakString: 1 +PenaltyBreakFirstLessLess: 1000 +PenaltyExcessCharacter: 1000 +PenaltyReturnTypeOnItsOwnLine: 90 +SpacesBeforeTrailingComments: 2 +Cpp11BracedListStyle: false +Standard: Auto +IndentWidth: 2 +TabWidth: 2 +UseTab: Never +IndentFunctionDeclarationAfterType: false +SpacesInParentheses: false +SpacesInAngles: false +SpaceInEmptyParentheses: false +SpacesInCStyleCastParentheses: false +# if else for 后的空格 +SpaceAfterControlStatementKeyword: true +SpaceBeforeAssignmentOperators: true +ContinuationIndentWidth: 4 +SortIncludes: false +SpaceAfterCStyleCast: false + +# Configure each individual brace in BraceWrapping +BreakBeforeBraces: Custom + +# Control of individual brace wrapping cases +BraceWrapping: { + AfterClass: 'true' + AfterControlStatement: 'true' + AfterEnum : 'true' + AfterFunction : 'true' + AfterNamespace : 'true' + AfterStruct : 'true' + AfterUnion : 'true' + BeforeCatch : 'true' + BeforeElse : 'true' + IndentBraces : 'false' +} +... diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 000000000..e10d92daa --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,6 @@ +{ + "files.associations": { + "ctime": "cpp", + "core": "cpp" + } +} \ No newline at end of file diff --git a/ch2/CMakeLists.txt b/ch02/CMakeLists.txt similarity index 94% rename from ch2/CMakeLists.txt rename to ch02/CMakeLists.txt index b3cca2be2..d9e5297e7 100644 --- a/ch2/CMakeLists.txt +++ b/ch02/CMakeLists.txt @@ -11,7 +11,7 @@ set( CMAKE_BUILD_TYPE "Debug" ) # 语法:add_executable( 程序名 源代码文件 ) add_executable( helloSLAM helloSLAM.cpp ) -# 添加一个库 +# 添加一个库(静态库) add_library( hello libHelloSLAM.cpp ) # 共享库 add_library( hello_shared SHARED libHelloSLAM.cpp ) diff --git a/ch2/helloSLAM b/ch02/helloSLAM similarity index 100% rename from ch2/helloSLAM rename to ch02/helloSLAM diff --git a/ch02/helloSLAM.cpp b/ch02/helloSLAM.cpp new file mode 100644 index 000000000..e1ab3dd74 --- /dev/null +++ b/ch02/helloSLAM.cpp @@ -0,0 +1,8 @@ +#include +using namespace std; + +int main(int argc, char** argv) +{ + cout << "Hello SLAM!" << endl; + return 0; +} diff --git a/ch2/libHelloSLAM.cpp b/ch02/libHelloSLAM.cpp similarity index 73% rename from ch2/libHelloSLAM.cpp rename to ch02/libHelloSLAM.cpp index 2911a5039..30c9373a2 100644 --- a/ch2/libHelloSLAM.cpp +++ b/ch02/libHelloSLAM.cpp @@ -4,5 +4,5 @@ using namespace std; void printHello() { - cout<<"Hello SLAM"< +using namespace std; +#include + +// Eigen 部分 +#include +// 稠密矩阵的代数运算(逆,特征值等) +#include + +#define MATRIX_SIZE 50 + +/**************************** +* 本程序演示了 Eigen 基本类型的使用 +****************************/ + +int main(int argc, char** argv) +{ + // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列 + // 声明一个2*3的float矩阵 + Eigen::Matrix matrix_23; + + // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix + // 例如 Vector3d 实质上是 Eigen::Matrix,即三维向量 + Eigen::Vector3d v_3d; + // 这是一样的 + Eigen::Matrix vd_3d; + + // Matrix3d 实质上是 Eigen::Matrix + Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零 + // 如果不确定矩阵大小,可以使用动态大小的矩阵 + Eigen::Matrix matrix_dynamic; + // 更简单的 + Eigen::MatrixXd matrix_x; + // 这种类型还有很多,我们不一一列举 + + // 下面是对Eigen阵的操作 + // 输入数据(初始化) + matrix_23 << 1, 2, 3, 4, 5, 6; + // 输出 + cout << matrix_23 << endl; + + // 用()访问矩阵中的元素 + for (int i = 0; i < 2; i++) + { + for (int j = 0; j < 3; j++) + cout << matrix_23(i, j) << "\t"; + cout << endl; + } + + // 矩阵和向量相乘(实际上仍是矩阵和矩阵) + v_3d << 3, 2, 1; + vd_3d << 4, 5, 6; + // 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的 + // Eigen::Matrix result_wrong_type = matrix_23 * v_3d; + // 应该显式转换 + Eigen::Matrix result = matrix_23.cast() * v_3d; + cout << result << endl; + + Eigen::Matrix result2 = matrix_23 * vd_3d; + cout << result2 << endl; + + // 同样你不能搞错矩阵的维度 + // 试着取消下面的注释,看看Eigen会报什么错 + // Eigen::Matrix result_wrong_dimension = matrix_23.cast() * v_3d; + + // 一些矩阵运算 + // 四则运算就不演示了,直接用+-*/即可。 + matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵 + cout << matrix_33 << endl << endl; + + cout << matrix_33.transpose() << endl; // 转置 + cout << matrix_33.sum() << endl; // 各元素和 + cout << matrix_33.trace() << endl; // 迹 + cout << 10 * matrix_33 << endl; // 数乘 + cout << matrix_33.inverse() << endl; // 逆 + cout << matrix_33.determinant() << endl; // 行列式 + + // 特征值 + // 实对称矩阵可以保证对角化成功 + Eigen::SelfAdjointEigenSolver eigen_solver(matrix_33.transpose() * matrix_33); + cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl; + cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl; + + // 解方程 + // 我们求解 matrix_NN * x = v_Nd 这个方程 + // N的大小在前边的宏里定义,它由随机数生成 + // 直接求逆自然是最直接的,但是求逆运算量大 + + Eigen::Matrix matrix_NN; + matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE); + Eigen::Matrix v_Nd; + v_Nd = Eigen::MatrixXd::Random(MATRIX_SIZE, 1); + + clock_t time_stt = clock(); // 计时 + // 直接求逆 + Eigen::Matrix x = matrix_NN.inverse() * v_Nd; + cout << "time use in normal inverse is " << 1000 * (clock() - time_stt) / (double)CLOCKS_PER_SEC << "ms" << endl; + + // 通常用矩阵分解来求,例如QR分解,速度会快很多 + time_stt = clock(); + x = matrix_NN.colPivHouseholderQr().solve(v_Nd); + cout << "time use in Qr decomposition is " << 1000 * (clock() - time_stt) / (double)CLOCKS_PER_SEC << "ms" << endl; + + return 0; +} diff --git a/ch3/useGeometry/CMakeLists.txt b/ch03/useGeometry/CMakeLists.txt similarity index 100% rename from ch3/useGeometry/CMakeLists.txt rename to ch03/useGeometry/CMakeLists.txt diff --git a/ch03/useGeometry/eigenGeometry.cpp b/ch03/useGeometry/eigenGeometry.cpp new file mode 100644 index 000000000..362ab6584 --- /dev/null +++ b/ch03/useGeometry/eigenGeometry.cpp @@ -0,0 +1,60 @@ +#include +#include +using namespace std; + +#include +// Eigen 几何模块 +#include + +/**************************** +* 本程序演示了 Eigen 几何模块的使用方法 +****************************/ + +int main(int argc, char** argv) +{ + // Eigen/Geometry 模块提供了各种旋转和平移的表示 + // 3D 旋转矩阵直接使用 Matrix3d 或 Matrix3f + Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity(); + // 旋转向量使用 AngleAxis, 它底层不直接是Matrix,但运算可以当作矩阵(因为重载了运算符) + Eigen::AngleAxisd rotation_vector(M_PI / 4, Eigen::Vector3d(0, 0, 1)); //沿 Z 轴旋转 45 度 + cout.precision(3); + cout << "rotation matrix =\n" << rotation_vector.matrix() << endl; //用matrix()转换成矩阵 + // 也可以直接赋值 + rotation_matrix = rotation_vector.toRotationMatrix(); + // 用 AngleAxis 可以进行坐标变换 + Eigen::Vector3d v(1, 0, 0); + Eigen::Vector3d v_rotated = rotation_vector * v; + cout << "(1,0,0) after rotation = " << v_rotated.transpose() << endl; + // 或者用旋转矩阵 + v_rotated = rotation_matrix * v; + cout << "(1,0,0) after rotation = " << v_rotated.transpose() << endl; + + // 欧拉角: 可以将旋转矩阵直接转换成欧拉角 + Eigen::Vector3d euler_angles = rotation_matrix.eulerAngles(2, 1, 0); // ZYX顺序,即roll pitch yaw顺序 + cout << "yaw pitch roll = " << euler_angles.transpose() << endl; + + // 欧氏变换矩阵使用 Eigen::Isometry + Eigen::Isometry3d T = Eigen::Isometry3d::Identity(); // 虽然称为3d,实质上是4*4的矩阵 + T.rotate(rotation_vector); // 按照rotation_vector进行旋转 + T.pretranslate(Eigen::Vector3d(1, 3, 4)); // 把平移向量设成(1,3,4) + cout << "Transform matrix = \n" << T.matrix() << endl; + + // 用变换矩阵进行坐标变换 + Eigen::Vector3d v_transformed = T * v; // 相当于R*v+t + cout << "v tranformed = " << v_transformed.transpose() << endl; + + // 对于仿射和射影变换,使用 Eigen::Affine3d 和 Eigen::Projective3d 即可,略 + + // 四元数 + // 可以直接把AngleAxis赋值给四元数,反之亦然 + Eigen::Quaterniond q = Eigen::Quaterniond(rotation_vector); + cout << "quaternion = \n" << q.coeffs() << endl; // 请注意coeffs的顺序是(x,y,z,w),w为实部,前三者为虚部 + // 也可以把旋转矩阵赋给它 + q = Eigen::Quaterniond(rotation_matrix); + cout << "quaternion = \n" << q.coeffs() << endl; + // 使用四元数旋转一个向量,使用重载的乘法即可 + v_rotated = q * v; // 注意数学上是qvq^{-1} + cout << "(1,0,0) after rotation = " << v_rotated.transpose() << endl; + + return 0; +} diff --git a/ch3/visualizeGeometry/CMakeLists.txt b/ch03/visualizeGeometry/CMakeLists.txt similarity index 100% rename from ch3/visualizeGeometry/CMakeLists.txt rename to ch03/visualizeGeometry/CMakeLists.txt diff --git a/ch3/visualizeGeometry/Readme.txt b/ch03/visualizeGeometry/Readme.txt similarity index 100% rename from ch3/visualizeGeometry/Readme.txt rename to ch03/visualizeGeometry/Readme.txt diff --git a/ch03/visualizeGeometry/visualizeGeometry.cpp b/ch03/visualizeGeometry/visualizeGeometry.cpp new file mode 100644 index 000000000..343fbf0ce --- /dev/null +++ b/ch03/visualizeGeometry/visualizeGeometry.cpp @@ -0,0 +1,132 @@ +#include +#include +using namespace std; + +#include +#include +using namespace Eigen; + +#include + +struct RotationMatrix +{ + Matrix3d matrix = Matrix3d::Identity(); +}; + +ostream& operator<<(ostream& out, const RotationMatrix& r) +{ + out.setf(ios::fixed); + Matrix3d matrix = r.matrix; + out << '='; + out << "[" << setprecision(2) << matrix(0, 0) << "," << matrix(0, 1) << "," << matrix(0, 2) << "]," + << "[" << matrix(1, 0) << "," << matrix(1, 1) << "," << matrix(1, 2) << "]," + << "[" << matrix(2, 0) << "," << matrix(2, 1) << "," << matrix(2, 2) << "]"; + return out; +} + +istream& operator>>(istream& in, RotationMatrix& r) +{ + return in; +} + +struct TranslationVector +{ + Vector3d trans = Vector3d(0, 0, 0); +}; + +ostream& operator<<(ostream& out, const TranslationVector& t) +{ + out << "=[" << t.trans(0) << ',' << t.trans(1) << ',' << t.trans(2) << "]"; + return out; +} + +istream& operator>>(istream& in, TranslationVector& t) +{ + return in; +} + +struct QuaternionDraw +{ + Quaterniond q; +}; + +ostream& operator<<(ostream& out, const QuaternionDraw quat) +{ + auto c = quat.q.coeffs(); + out << "=[" << c[0] << "," << c[1] << "," << c[2] << "," << c[3] << "]"; + return out; +} + +istream& operator>>(istream& in, const QuaternionDraw quat) +{ + return in; +} + +int main(int argc, char** argv) +{ + pangolin::CreateWindowAndBind("visualize geometry", 1000, 600); + glEnable(GL_DEPTH_TEST); + pangolin::OpenGlRenderState s_cam(pangolin::ProjectionMatrix(1000, 600, 420, 420, 500, 300, 0.1, 1000), + pangolin::ModelViewLookAt(3, 3, 3, 0, 0, 0, pangolin::AxisY)); + + const int UI_WIDTH = 500; + + pangolin::View& d_cam = pangolin::CreateDisplay() + .SetBounds(0.0, 1.0, pangolin::Attach::Pix(UI_WIDTH), 1.0, -1000.0f / 600.0f) + .SetHandler(new pangolin::Handler3D(s_cam)); + + // ui + pangolin::Var rotation_matrix("ui.R", RotationMatrix()); + pangolin::Var translation_vector("ui.t", TranslationVector()); + pangolin::Var euler_angles("ui.rpy", TranslationVector()); + pangolin::Var quaternion("ui.q", QuaternionDraw()); + pangolin::CreatePanel("ui").SetBounds(0.0, 1.0, 0.0, pangolin::Attach::Pix(UI_WIDTH)); + + while (!pangolin::ShouldQuit()) + { + glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); + + d_cam.Activate(s_cam); + + pangolin::OpenGlMatrix matrix = s_cam.GetModelViewMatrix(); + Matrix m = matrix; + // m = m.inverse(); + RotationMatrix R; + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + R.matrix(i, j) = m(j, i); + rotation_matrix = R; + + TranslationVector t; + t.trans = Vector3d(m(0, 3), m(1, 3), m(2, 3)); + t.trans = -R.matrix * t.trans; + translation_vector = t; + + TranslationVector euler; + euler.trans = R.matrix.transpose().eulerAngles(2, 1, 0); + euler_angles = euler; + + QuaternionDraw quat; + quat.q = Quaterniond(R.matrix); + quaternion = quat; + + glColor3f(1.0, 1.0, 1.0); + + pangolin::glDrawColouredCube(); + // draw the original axis + glLineWidth(3); + glColor3f(0.8f, 0.f, 0.f); + glBegin(GL_LINES); + glVertex3f(0, 0, 0); + glVertex3f(10, 0, 0); + glColor3f(0.f, 0.8f, 0.f); + glVertex3f(0, 0, 0); + glVertex3f(0, 10, 0); + glColor3f(0.2f, 0.2f, 1.f); + glVertex3f(0, 0, 0); + glVertex3f(0, 0, 10); + glEnd(); + + pangolin::FinishFrame(); + } +} diff --git a/ch4/useSophus/CMakeLists.txt b/ch04/useSophus/CMakeLists.txt similarity index 100% rename from ch4/useSophus/CMakeLists.txt rename to ch04/useSophus/CMakeLists.txt diff --git a/ch04/useSophus/useSophus.cpp b/ch04/useSophus/useSophus.cpp new file mode 100644 index 000000000..ebff98a63 --- /dev/null +++ b/ch04/useSophus/useSophus.cpp @@ -0,0 +1,65 @@ +#include +#include +using namespace std; + +#include +#include + +#include "sophus/so3.h" +#include "sophus/se3.h" + +int main(int argc, char** argv) +{ + // 沿Z轴转90度的旋转矩阵 + Eigen::Matrix3d R = Eigen::AngleAxisd(M_PI / 2, Eigen::Vector3d(0, 0, 1)).toRotationMatrix(); + + Sophus::SO3 SO3_R(R); // Sophus::SO(3)可以直接从旋转矩阵构造 + Sophus::SO3 SO3_v(0, 0, M_PI / 2); // 亦可从旋转向量构造 + Eigen::Quaterniond q(R); // 或者四元数 + Sophus::SO3 SO3_q(q); + // 上述表达方式都是等价的 + // 输出SO(3)时,以so(3)形式输出 + cout << "SO(3) from matrix: " << SO3_R << endl; + cout << "SO(3) from vector: " << SO3_v << endl; + cout << "SO(3) from quaternion :" << SO3_q << endl; + + // 使用对数映射获得它的李代数 + Eigen::Vector3d so3 = SO3_R.log(); + cout << "so3 = " << so3.transpose() << endl; + // hat 为向量到反对称矩阵 + cout << "so3 hat=\n" << Sophus::SO3::hat(so3) << endl; + // 相对的,vee为反对称到向量 + cout << "so3 hat vee= " << Sophus::SO3::vee(Sophus::SO3::hat(so3)).transpose() + << endl; // transpose纯粹是为了输出美观一些 + + // 增量扰动模型的更新 + Eigen::Vector3d update_so3(1e-4, 0, 0); //假设更新量为这么多 + Sophus::SO3 SO3_updated = Sophus::SO3::exp(update_so3) * SO3_R; + cout << "SO3 updated = " << SO3_updated << endl; + + /********************萌萌的分割线*****************************/ + cout << "************我是分割线*************" << endl; + // 对SE(3)操作大同小异 + Eigen::Vector3d t(1, 0, 0); // 沿X轴平移1 + Sophus::SE3 SE3_Rt(R, t); // 从R,t构造SE(3) + Sophus::SE3 SE3_qt(q, t); // 从q,t构造SE(3) + cout << "SE3 from R,t= " << endl << SE3_Rt << endl; + cout << "SE3 from q,t= " << endl << SE3_qt << endl; + // 李代数se(3) 是一个六维向量,方便起见先typedef一下 + typedef Eigen::Matrix Vector6d; + Vector6d se3 = SE3_Rt.log(); + cout << "se3 = " << se3.transpose() << endl; + // 观察输出,会发现在Sophus中,se(3)的平移在前,旋转在后. + // 同样的,有hat和vee两个算符 + cout << "se3 hat = " << endl << Sophus::SE3::hat(se3) << endl; + cout << "se3 hat vee = " << Sophus::SE3::vee(Sophus::SE3::hat(se3)).transpose() << endl; + + // 最后,演示一下更新 + Vector6d update_se3; //更新量 + update_se3.setZero(); + update_se3(0, 0) = 1e-4d; + Sophus::SE3 SE3_updated = Sophus::SE3::exp(update_se3) * SE3_Rt; + cout << "SE3 updated = " << endl << SE3_updated.matrix() << endl; + + return 0; +} \ No newline at end of file diff --git a/ch5/imageBasics/CMakeLists.txt b/ch05/imageBasics/CMakeLists.txt similarity index 100% rename from ch5/imageBasics/CMakeLists.txt rename to ch05/imageBasics/CMakeLists.txt diff --git a/ch05/imageBasics/imageBasics.cpp b/ch05/imageBasics/imageBasics.cpp new file mode 100644 index 000000000..da4357337 --- /dev/null +++ b/ch05/imageBasics/imageBasics.cpp @@ -0,0 +1,72 @@ +#include +#include +using namespace std; + +#include +#include + +int main(int argc, char** argv) +{ + // 读取argv[1]指定的图像 + cv::Mat image; + image = cv::imread(argv[1]); // cv::imread函数读取指定路径下的图像 + // 判断图像文件是否正确读取 + if (image.data == nullptr) //数据不存在,可能是文件不存在 + { + cerr << "文件" << argv[1] << "不存在." << endl; + return 0; + } + + // 文件顺利读取, 首先输出一些基本信息 + cout << "图像宽为" << image.cols << ",高为" << image.rows << ",通道数为" << image.channels() << endl; + cv::imshow("image", image); // 用cv::imshow显示图像 + cv::waitKey(0); // 暂停程序,等待一个按键输入 + // 判断image的类型 + if (image.type() != CV_8UC1 && image.type() != CV_8UC3) + { + // 图像类型不符合要求 + cout << "请输入一张彩色图或灰度图." << endl; + return 0; + } + + // 遍历图像, 请注意以下遍历方式亦可使用于随机像素访问 + // 使用 std::chrono 来给算法计时 + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + for (size_t y = 0; y < image.rows; y++) + { + // 用cv::Mat::ptr获得图像的行指针 + unsigned char* row_ptr = image.ptr(y); // row_ptr是第y行的头指针 + for (size_t x = 0; x < image.cols; x++) + { + // 访问位于 x,y 处的像素 + unsigned char* data_ptr = &row_ptr[x * image.channels()]; // data_ptr 指向待访问的像素数据 + // 输出该像素的每个通道,如果是灰度图就只有一个通道 + for (int c = 0; c != image.channels(); c++) + { + unsigned char data = data_ptr[c]; // data为I(x,y)第c个通道的值 + } + } + } + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "遍历图像用时:" << time_used.count() << " 秒。" << endl; + + // 关于 cv::Mat 的拷贝 + // 直接赋值并不会拷贝数据 + cv::Mat image_another = image; + // 修改 image_another 会导致 image 发生变化 + image_another(cv::Rect(0, 0, 100, 100)).setTo(0); // 将左上角100*100的块置零 + cv::imshow("image", image); + cv::waitKey(0); + + // 使用clone函数来拷贝数据 + cv::Mat image_clone = image.clone(); + image_clone(cv::Rect(0, 0, 100, 100)).setTo(255); + cv::imshow("image", image); + cv::imshow("image_clone", image_clone); + cv::waitKey(0); + + // 对于图像还有很多基本的操作,如剪切,旋转,缩放等,限于篇幅就不一一介绍了,请参看OpenCV官方文档查询每个函数的调用方法. + cv::destroyAllWindows(); + return 0; +} diff --git a/ch5/imageBasics/ubuntu.png b/ch05/imageBasics/ubuntu.png similarity index 100% rename from ch5/imageBasics/ubuntu.png rename to ch05/imageBasics/ubuntu.png diff --git a/ch5/joinMap/CMakeLists.txt b/ch05/joinMap/CMakeLists.txt similarity index 100% rename from ch5/joinMap/CMakeLists.txt rename to ch05/joinMap/CMakeLists.txt diff --git a/ch5/joinMap/color/1.png b/ch05/joinMap/color/1.png similarity index 100% rename from ch5/joinMap/color/1.png rename to ch05/joinMap/color/1.png diff --git a/ch5/joinMap/color/2.png b/ch05/joinMap/color/2.png similarity index 100% rename from ch5/joinMap/color/2.png rename to ch05/joinMap/color/2.png diff --git a/ch5/joinMap/color/3.png b/ch05/joinMap/color/3.png similarity index 100% rename from ch5/joinMap/color/3.png rename to ch05/joinMap/color/3.png diff --git a/ch5/joinMap/color/4.png b/ch05/joinMap/color/4.png similarity index 100% rename from ch5/joinMap/color/4.png rename to ch05/joinMap/color/4.png diff --git a/ch5/joinMap/color/5.png b/ch05/joinMap/color/5.png similarity index 100% rename from ch5/joinMap/color/5.png rename to ch05/joinMap/color/5.png diff --git a/ch5/joinMap/depth/1.pgm b/ch05/joinMap/depth/1.pgm similarity index 100% rename from ch5/joinMap/depth/1.pgm rename to ch05/joinMap/depth/1.pgm diff --git a/ch5/joinMap/depth/2.pgm b/ch05/joinMap/depth/2.pgm similarity index 100% rename from ch5/joinMap/depth/2.pgm rename to ch05/joinMap/depth/2.pgm diff --git a/ch5/joinMap/depth/3.pgm b/ch05/joinMap/depth/3.pgm similarity index 100% rename from ch5/joinMap/depth/3.pgm rename to ch05/joinMap/depth/3.pgm diff --git a/ch5/joinMap/depth/4.pgm b/ch05/joinMap/depth/4.pgm similarity index 100% rename from ch5/joinMap/depth/4.pgm rename to ch05/joinMap/depth/4.pgm diff --git a/ch5/joinMap/depth/5.pgm b/ch05/joinMap/depth/5.pgm similarity index 100% rename from ch5/joinMap/depth/5.pgm rename to ch05/joinMap/depth/5.pgm diff --git a/ch05/joinMap/joinMap.cpp b/ch05/joinMap/joinMap.cpp new file mode 100644 index 000000000..bf123a8ed --- /dev/null +++ b/ch05/joinMap/joinMap.cpp @@ -0,0 +1,88 @@ +#include +#include +using namespace std; +#include +#include +#include +#include // for formating strings +#include +#include +#include + +int main(int argc, char** argv) +{ + vector colorImgs, depthImgs; // 彩色图和深度图 + vector> poses; // 相机位姿 + + ifstream fin("./pose.txt"); + if (!fin) + { + cerr << "请在有pose.txt的目录下运行此程序" << endl; + return 1; + } + + for (int i = 0; i < 5; i++) + { + boost::format fmt("./%s/%d.%s"); //图像文件格式 + colorImgs.push_back(cv::imread((fmt % "color" % (i + 1) % "png").str())); + depthImgs.push_back(cv::imread((fmt % "depth" % (i + 1) % "pgm").str(), -1)); // 使用-1读取原始图像 + + double data[7] = { 0 }; + for (auto& d : data) + fin >> d; + Eigen::Quaterniond q(data[6], data[3], data[4], data[5]); + Eigen::Isometry3d T(q); + T.pretranslate(Eigen::Vector3d(data[0], data[1], data[2])); + poses.push_back(T); + } + + // 计算点云并拼接 + // 相机内参 + double cx = 325.5; + double cy = 253.5; + double fx = 518.0; + double fy = 519.0; + double depthScale = 1000.0; + + cout << "正在将图像转换为点云..." << endl; + + // 定义点云使用的格式:这里用的是XYZRGB + typedef pcl::PointXYZRGB PointT; + typedef pcl::PointCloud PointCloud; + + // 新建一个点云 + PointCloud::Ptr pointCloud(new PointCloud); + for (int i = 0; i < 5; i++) + { + cout << "转换图像中: " << i + 1 << endl; + cv::Mat color = colorImgs[i]; + cv::Mat depth = depthImgs[i]; + Eigen::Isometry3d T = poses[i]; + for (int v = 0; v < color.rows; v++) + for (int u = 0; u < color.cols; u++) + { + unsigned int d = depth.ptr(v)[u]; // 深度值 + if (d == 0) + continue; // 为0表示没有测量到 + Eigen::Vector3d point; + point[2] = double(d) / depthScale; + point[0] = (u - cx) * point[2] / fx; + point[1] = (v - cy) * point[2] / fy; + Eigen::Vector3d pointWorld = T * point; + + PointT p; + p.x = pointWorld[0]; + p.y = pointWorld[1]; + p.z = pointWorld[2]; + p.b = color.data[v * color.step + u * color.channels()]; + p.g = color.data[v * color.step + u * color.channels() + 1]; + p.r = color.data[v * color.step + u * color.channels() + 2]; + pointCloud->points.push_back(p); + } + } + + pointCloud->is_dense = false; + cout << "点云共有" << pointCloud->size() << "个点." << endl; + pcl::io::savePCDFileBinary("map.pcd", *pointCloud); + return 0; +} diff --git a/ch5/joinMap/pose.txt b/ch05/joinMap/pose.txt similarity index 100% rename from ch5/joinMap/pose.txt rename to ch05/joinMap/pose.txt diff --git a/ch6/ceres_curve_fitting/CMakeLists.txt b/ch06/ceres_curve_fitting/CMakeLists.txt similarity index 100% rename from ch6/ceres_curve_fitting/CMakeLists.txt rename to ch06/ceres_curve_fitting/CMakeLists.txt diff --git a/ch6/ceres_curve_fitting/cmake_modules/CeresConfig.cmake.in b/ch06/ceres_curve_fitting/cmake_modules/CeresConfig.cmake.in similarity index 100% rename from ch6/ceres_curve_fitting/cmake_modules/CeresConfig.cmake.in rename to ch06/ceres_curve_fitting/cmake_modules/CeresConfig.cmake.in diff --git a/ch06/ceres_curve_fitting/main.cpp b/ch06/ceres_curve_fitting/main.cpp new file mode 100644 index 000000000..5d259d5b3 --- /dev/null +++ b/ch06/ceres_curve_fitting/main.cpp @@ -0,0 +1,76 @@ +#include +#include +#include +#include + +using namespace std; + +// 代价函数的计算模型 +struct CURVE_FITTING_COST +{ + CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) + { + } + // 残差的计算 + template + bool operator()(const T* const abc, // 模型参数,有3维 + T* residual) const // 残差 + { + residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c) + return true; + } + const double _x, _y; // x,y数据 +}; + +int main(int argc, char** argv) +{ + double a = 1.0, b = 2.0, c = 1.0; // 真实参数值 + int N = 100; // 数据点 + double w_sigma = 1.0; // 噪声Sigma值 + cv::RNG rng; // OpenCV随机数产生器 + double abc[3] = { 0, 0, 0 }; // abc参数的估计值 + + vector x_data, y_data; // 数据 + + cout << "generating data: " << endl; + for (int i = 0; i < N; i++) + { + double x = i / 100.0; + x_data.push_back(x); + y_data.push_back(exp(a * x * x + b * x + c) + rng.gaussian(w_sigma)); + cout << x_data[i] << " " << y_data[i] << endl; + } + + // 构建最小二乘问题 + ceres::Problem problem; + for (int i = 0; i < N; i++) + { + problem.AddResidualBlock( // 向问题中添加误差项 + // 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致 + new ceres::AutoDiffCostFunction(new CURVE_FITTING_COST(x_data[i], y_data[i])), + nullptr, // 核函数,这里不使用,为空 + abc // 待估计参数 + ); + } + + // 配置求解器 + ceres::Solver::Options options; // 这里有很多配置项可以填 + options.linear_solver_type = ceres::DENSE_QR; // 增量方程如何求解 + options.minimizer_progress_to_stdout = true; // 输出到cout + + ceres::Solver::Summary summary; // 优化信息 + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + ceres::Solve(options, &problem, &summary); // 开始优化 + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "solve time cost = " << time_used.count() << " seconds. " << endl; + + // 输出结果 + cout << summary.BriefReport() << endl; + cout << "estimated a,b,c = "; + for (auto a : abc) + cout << a << " "; + cout << endl; + + return 0; +} diff --git a/ch6/g2o_curve_fitting/CMakeLists.txt b/ch06/g2o_curve_fitting/CMakeLists.txt similarity index 100% rename from ch6/g2o_curve_fitting/CMakeLists.txt rename to ch06/g2o_curve_fitting/CMakeLists.txt diff --git a/ch6/g2o_curve_fitting/cmake_modules/FindG2O.cmake b/ch06/g2o_curve_fitting/cmake_modules/FindG2O.cmake similarity index 100% rename from ch6/g2o_curve_fitting/cmake_modules/FindG2O.cmake rename to ch06/g2o_curve_fitting/cmake_modules/FindG2O.cmake diff --git a/ch06/g2o_curve_fitting/main.cpp b/ch06/g2o_curve_fitting/main.cpp new file mode 100644 index 000000000..b201f95e1 --- /dev/null +++ b/ch06/g2o_curve_fitting/main.cpp @@ -0,0 +1,127 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +using namespace std; + +// 曲线模型的顶点,模板参数:优化变量维度和数据类型 +class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + virtual void setToOriginImpl() // 重置 + { + _estimate << 0, 0, 0; + } + + virtual void oplusImpl(const double* update) // 更新 + { + _estimate += Eigen::Vector3d(update); + } + // 存盘和读盘:留空 + virtual bool read(istream& in) + { + } + virtual bool write(ostream& out) const + { + } +}; + +// 误差模型 模板参数:观测值维度,类型,连接顶点类型 +class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) + { + } + // 计算曲线模型误差 + void computeError() + { + const CurveFittingVertex* v = static_cast(_vertices[0]); + const Eigen::Vector3d abc = v->estimate(); + _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0)); + } + virtual bool read(istream& in) + { + } + virtual bool write(ostream& out) const + { + } + +public: + double _x; // x 值, y 值为 _measurement +}; + +int main(int argc, char** argv) +{ + double a = 1.0, b = 2.0, c = 1.0; // 真实参数值 + int N = 100; // 数据点 + double w_sigma = 1.0; // 噪声Sigma值 + cv::RNG rng; // OpenCV随机数产生器 + double abc[3] = { 0, 0, 0 }; // abc参数的估计值 + + vector x_data, y_data; // 数据 + + cout << "generating data: " << endl; + for (int i = 0; i < N; i++) + { + double x = i / 100.0; + x_data.push_back(x); + y_data.push_back(exp(a * x * x + b * x + c) + rng.gaussian(w_sigma)); + cout << x_data[i] << " " << y_data[i] << endl; + } + + // 构建图优化,先设定g2o + typedef g2o::BlockSolver> Block; // 每个误差项优化变量维度为3,误差值维度为1 + Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense(); // 线性方程求解器 + Block* solver_ptr = new Block(linearSolver); // 矩阵块求解器 + // 梯度下降方法,从GN, LM, DogLeg 中选 + g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); + // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); + // g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr ); + g2o::SparseOptimizer optimizer; // 图模型 + optimizer.setAlgorithm(solver); // 设置求解器 + optimizer.setVerbose(true); // 打开调试输出 + + // 往图中增加顶点 + CurveFittingVertex* v = new CurveFittingVertex(); + v->setEstimate(Eigen::Vector3d(0, 0, 0)); + v->setId(0); + optimizer.addVertex(v); + + // 往图中增加边 + for (int i = 0; i < N; i++) + { + CurveFittingEdge* edge = new CurveFittingEdge(x_data[i]); + edge->setId(i); + edge->setVertex(0, v); // 设置连接的顶点 + edge->setMeasurement(y_data[i]); // 观测数值 + edge->setInformation(Eigen::Matrix::Identity() * 1 / + (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆 + optimizer.addEdge(edge); + } + + // 执行优化 + cout << "start optimization" << endl; + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + optimizer.initializeOptimization(); + optimizer.optimize(100); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "solve time cost = " << time_used.count() << " seconds. " << endl; + + // 输出优化值 + Eigen::Vector3d abc_estimate = v->estimate(); + cout << "estimated model: " << abc_estimate.transpose() << endl; + + return 0; +} \ No newline at end of file diff --git a/ch7/1.png b/ch07/1.png similarity index 100% rename from ch7/1.png rename to ch07/1.png diff --git a/ch7/1_depth.png b/ch07/1_depth.png similarity index 100% rename from ch7/1_depth.png rename to ch07/1_depth.png diff --git a/ch7/2.png b/ch07/2.png similarity index 100% rename from ch7/2.png rename to ch07/2.png diff --git a/ch7/2_depth.png b/ch07/2_depth.png similarity index 100% rename from ch7/2_depth.png rename to ch07/2_depth.png diff --git a/ch7/CMakeLists.txt b/ch07/CMakeLists.txt similarity index 100% rename from ch7/CMakeLists.txt rename to ch07/CMakeLists.txt diff --git a/ch7/cmake_modules/FindCSparse.cmake b/ch07/cmake_modules/FindCSparse.cmake similarity index 100% rename from ch7/cmake_modules/FindCSparse.cmake rename to ch07/cmake_modules/FindCSparse.cmake diff --git a/ch7/cmake_modules/FindG2O.cmake b/ch07/cmake_modules/FindG2O.cmake similarity index 100% rename from ch7/cmake_modules/FindG2O.cmake rename to ch07/cmake_modules/FindG2O.cmake diff --git a/ch07/extra.cpp b/ch07/extra.cpp new file mode 100644 index 000000000..52726013b --- /dev/null +++ b/ch07/extra.cpp @@ -0,0 +1,205 @@ +#include "extra.h" +#include +using namespace std; + +void decomposeEssentialMat(InputArray _E, OutputArray _R1, OutputArray _R2, OutputArray _t) +{ + Mat E = _E.getMat().reshape(1, 3); + CV_Assert(E.cols == 3 && E.rows == 3); + + Mat D, U, Vt; + SVD::compute(E, D, U, Vt); + + if (determinant(U) < 0) + U *= -1.; + if (determinant(Vt) < 0) + Vt *= -1.; + + Mat W = (Mat_(3, 3) << 0, 1, 0, -1, 0, 0, 0, 0, 1); + W.convertTo(W, E.type()); + + Mat R1, R2, t; + R1 = U * W * Vt; + R2 = U * W.t() * Vt; + t = U.col(2) * 1.0; + + R1.copyTo(_R1); + R2.copyTo(_R2); + t.copyTo(_t); +} + +int recoverPose(InputArray E, InputArray _points1, InputArray _points2, OutputArray _R, OutputArray _t, double focal, + Point2d pp, InputOutputArray _mask) +{ + Mat points1, points2, cameraMatrix; + cameraMatrix = (Mat_(3, 3) << focal, 0, pp.x, 0, focal, pp.y, 0, 0, 1); + _points1.getMat().convertTo(points1, CV_64F); + _points2.getMat().convertTo(points2, CV_64F); + + int npoints = points1.checkVector(2); + CV_Assert(npoints >= 0 && points2.checkVector(2) == npoints && points1.type() == points2.type()); + + CV_Assert(cameraMatrix.rows == 3 && cameraMatrix.cols == 3 && cameraMatrix.channels() == 1); + + if (points1.channels() > 1) + { + points1 = points1.reshape(1, npoints); + points2 = points2.reshape(1, npoints); + } + + double fx = cameraMatrix.at(0, 0); + double fy = cameraMatrix.at(1, 1); + double cx = cameraMatrix.at(0, 2); + double cy = cameraMatrix.at(1, 2); + + points1.col(0) = (points1.col(0) - cx) / fx; + points2.col(0) = (points2.col(0) - cx) / fx; + points1.col(1) = (points1.col(1) - cy) / fy; + points2.col(1) = (points2.col(1) - cy) / fy; + + points1 = points1.t(); + points2 = points2.t(); + + Mat R1, R2, t; + decomposeEssentialMat(E, R1, R2, t); + Mat P0 = Mat::eye(3, 4, R1.type()); + Mat P1(3, 4, R1.type()), P2(3, 4, R1.type()), P3(3, 4, R1.type()), P4(3, 4, R1.type()); + P1(Range::all(), Range(0, 3)) = R1 * 1.0; + P1.col(3) = t * 1.0; + P2(Range::all(), Range(0, 3)) = R2 * 1.0; + P2.col(3) = t * 1.0; + P3(Range::all(), Range(0, 3)) = R1 * 1.0; + P3.col(3) = -t * 1.0; + P4(Range::all(), Range(0, 3)) = R2 * 1.0; + P4.col(3) = -t * 1.0; + + // Do the cheirality check. + // Notice here a threshold dist is used to filter + // out far away points (i.e. infinite points) since + // there depth may vary between postive and negtive. + double dist = 50.0; + Mat Q; + triangulatePoints(P0, P1, points1, points2, Q); + Mat mask1 = Q.row(2).mul(Q.row(3)) > 0; + Q.row(0) /= Q.row(3); + Q.row(1) /= Q.row(3); + Q.row(2) /= Q.row(3); + Q.row(3) /= Q.row(3); + mask1 = (Q.row(2) < dist) & mask1; + Q = P1 * Q; + mask1 = (Q.row(2) > 0) & mask1; + mask1 = (Q.row(2) < dist) & mask1; + + triangulatePoints(P0, P2, points1, points2, Q); + Mat mask2 = Q.row(2).mul(Q.row(3)) > 0; + Q.row(0) /= Q.row(3); + Q.row(1) /= Q.row(3); + Q.row(2) /= Q.row(3); + Q.row(3) /= Q.row(3); + mask2 = (Q.row(2) < dist) & mask2; + Q = P2 * Q; + mask2 = (Q.row(2) > 0) & mask2; + mask2 = (Q.row(2) < dist) & mask2; + + triangulatePoints(P0, P3, points1, points2, Q); + Mat mask3 = Q.row(2).mul(Q.row(3)) > 0; + Q.row(0) /= Q.row(3); + Q.row(1) /= Q.row(3); + Q.row(2) /= Q.row(3); + Q.row(3) /= Q.row(3); + mask3 = (Q.row(2) < dist) & mask3; + Q = P3 * Q; + mask3 = (Q.row(2) > 0) & mask3; + mask3 = (Q.row(2) < dist) & mask3; + + triangulatePoints(P0, P4, points1, points2, Q); + Mat mask4 = Q.row(2).mul(Q.row(3)) > 0; + Q.row(0) /= Q.row(3); + Q.row(1) /= Q.row(3); + Q.row(2) /= Q.row(3); + Q.row(3) /= Q.row(3); + mask4 = (Q.row(2) < dist) & mask4; + Q = P4 * Q; + mask4 = (Q.row(2) > 0) & mask4; + mask4 = (Q.row(2) < dist) & mask4; + + mask1 = mask1.t(); + mask2 = mask2.t(); + mask3 = mask3.t(); + mask4 = mask4.t(); + + // If _mask is given, then use it to filter outliers. + if (!_mask.empty()) + { + Mat mask = _mask.getMat(); + CV_Assert(mask.size() == mask1.size()); + bitwise_and(mask, mask1, mask1); + bitwise_and(mask, mask2, mask2); + bitwise_and(mask, mask3, mask3); + bitwise_and(mask, mask4, mask4); + } + if (_mask.empty() && _mask.needed()) + { + _mask.create(mask1.size(), CV_8U); + } + + CV_Assert(_R.needed() && _t.needed()); + _R.create(3, 3, R1.type()); + _t.create(3, 1, t.type()); + + int good1 = countNonZero(mask1); + int good2 = countNonZero(mask2); + int good3 = countNonZero(mask3); + int good4 = countNonZero(mask4); + + if (good1 >= good2 && good1 >= good3 && good1 >= good4) + { + R1.copyTo(_R); + t.copyTo(_t); + if (_mask.needed()) + mask1.copyTo(_mask); + return good1; + } + else if (good2 >= good1 && good2 >= good3 && good2 >= good4) + { + R2.copyTo(_R); + t.copyTo(_t); + if (_mask.needed()) + mask2.copyTo(_mask); + return good2; + } + else if (good3 >= good1 && good3 >= good2 && good3 >= good4) + { + t = -t; + R1.copyTo(_R); + t.copyTo(_t); + if (_mask.needed()) + mask3.copyTo(_mask); + return good3; + } + else + { + t = -t; + R2.copyTo(_R); + t.copyTo(_t); + if (_mask.needed()) + mask4.copyTo(_mask); + return good4; + } +} + +cv::Mat findEssentialMat(InputArray _points1, InputArray _points2, double focal, Point2d pp) +{ + Mat cameraMatrix = (Mat_(3, 3) << focal, 0, pp.x, 0, focal, pp.y, 0, 0, 1); + + Mat points1, points2; + _points1.getMat().convertTo(points1, CV_64F); + _points2.getMat().convertTo(points2, CV_64F); + + Mat fundamental_matrix; + fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT); + Mat E; + E = cameraMatrix.t() * fundamental_matrix * cameraMatrix; + + return E; +} diff --git a/ch07/extra.h b/ch07/extra.h new file mode 100644 index 000000000..7dfc2c5ff --- /dev/null +++ b/ch07/extra.h @@ -0,0 +1,17 @@ +#ifndef _EXTRA_H_ +#define _EXTRA_H_ +#include +#include +#include +#include + +using namespace cv; + +void decomposeEssentialMat(InputArray _E, OutputArray _R1, OutputArray _R2, OutputArray _t); + +int recoverPose(InputArray E, InputArray _points1, InputArray _points2, OutputArray _R, OutputArray _t, double focal, + Point2d pp = Point2d(0, 0), InputOutputArray _mask = noArray()); + +cv::Mat findEssentialMat(InputArray _points1, InputArray _points2, double focal, Point2d pp); + +#endif \ No newline at end of file diff --git a/ch07/feature_extraction.cpp b/ch07/feature_extraction.cpp new file mode 100644 index 000000000..2f6baefd0 --- /dev/null +++ b/ch07/feature_extraction.cpp @@ -0,0 +1,90 @@ +#include +#include +#include +#include + +using namespace std; +using namespace cv; + +int main(int argc, char** argv) +{ + if (argc != 3) + { + cout << "usage: feature_extraction img1 img2" << endl; + return 1; + } + //-- 读取图像 + Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); + Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); + + //-- 初始化 + std::vector keypoints_1, keypoints_2; + Mat descriptors_1, descriptors_2; + Ptr detector = ORB::create(); + Ptr descriptor = ORB::create(); + // Ptr detector = FeatureDetector::create(detector_name); + // Ptr descriptor = DescriptorExtractor::create(descriptor_name); + Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); + + //-- 第一步:检测 Oriented FAST 角点位置 + detector->detect(img_1, keypoints_1); + detector->detect(img_2, keypoints_2); + + //-- 第二步:根据角点位置计算 BRIEF 描述子 + descriptor->compute(img_1, keypoints_1, descriptors_1); + descriptor->compute(img_2, keypoints_2, descriptors_2); + + Mat outimg1; + drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); + imshow("ORB特征点", outimg1); + + //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 + vector matches; + // BFMatcher matcher ( NORM_HAMMING ); + matcher->match(descriptors_1, descriptors_2, matches); + + //-- 第四步:匹配点对筛选 + double min_dist = 10000, max_dist = 0; + + //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 + for (int i = 0; i < descriptors_1.rows; i++) + { + double dist = matches[i].distance; + if (dist < min_dist) + min_dist = dist; + if (dist > max_dist) + max_dist = dist; + } + + // 仅供娱乐的写法 + min_dist = min_element(matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) { + return m1.distance < m2.distance; + })->distance; + max_dist = max_element(matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) { + return m1.distance < m2.distance; + })->distance; + + printf("-- Max dist : %f \n", max_dist); + printf("-- Min dist : %f \n", min_dist); + + //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. + std::vector good_matches; + for (int i = 0; i < descriptors_1.rows; i++) + { + if (matches[i].distance <= max(2 * min_dist, 30.0)) + { + good_matches.push_back(matches[i]); + } + } + + //-- 第五步:绘制匹配结果 + Mat img_match; + Mat img_goodmatch; + drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match); + drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch); + imshow("所有匹配点对", img_match); + imshow("优化后匹配点对", img_goodmatch); + waitKey(0); + + return 0; +} diff --git a/ch07/pose_estimation_2d2d.cpp b/ch07/pose_estimation_2d2d.cpp new file mode 100644 index 000000000..037f5ae1e --- /dev/null +++ b/ch07/pose_estimation_2d2d.cpp @@ -0,0 +1,156 @@ +#include +#include +#include +#include +#include +// #include "extra.h" // use this if in OpenCV2 +using namespace std; +using namespace cv; + +/**************************************************** + * 本程序演示了如何使用2D-2D的特征匹配估计相机运动 + * **************************************************/ + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches); + +void pose_estimation_2d2d(std::vector keypoints_1, std::vector keypoints_2, + std::vector matches, Mat& R, Mat& t); + +// 像素坐标转相机归一化坐标 +Point2d pixel2cam(const Point2d& p, const Mat& K); + +int main(int argc, char** argv) +{ + if (argc != 3) + { + cout << "usage: pose_estimation_2d2d img1 img2" << endl; + return 1; + } + //-- 读取图像 + Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); + Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); + + vector keypoints_1, keypoints_2; + vector matches; + find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); + cout << "一共找到了" << matches.size() << "组匹配点" << endl; + + //-- 估计两张图像间运动 + Mat R, t; + pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); + + //-- 验证E=t^R*scale + Mat t_x = (Mat_(3, 3) << 0, -t.at(2, 0), t.at(1, 0), t.at(2, 0), 0, + -t.at(0, 0), -t.at(1, 0), t.at(0, 0), 0); + + cout << "t^R=" << endl << t_x * R << endl; + + //-- 验证对极约束 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + for (DMatch m : matches) + { + Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); + Mat y1 = (Mat_(3, 1) << pt1.x, pt1.y, 1); + Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K); + Mat y2 = (Mat_(3, 1) << pt2.x, pt2.y, 1); + Mat d = y2.t() * t_x * R * y1; + cout << "epipolar constraint = " << d << endl; + } + return 0; +} + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches) +{ + //-- 初始化 + Mat descriptors_1, descriptors_2; + // used in OpenCV3 + Ptr detector = ORB::create(); + Ptr descriptor = ORB::create(); + // use this if you are in OpenCV2 + // Ptr detector = FeatureDetector::create ( "ORB" ); + // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); + Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); + //-- 第一步:检测 Oriented FAST 角点位置 + detector->detect(img_1, keypoints_1); + detector->detect(img_2, keypoints_2); + + //-- 第二步:根据角点位置计算 BRIEF 描述子 + descriptor->compute(img_1, keypoints_1, descriptors_1); + descriptor->compute(img_2, keypoints_2, descriptors_2); + + //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 + vector match; + // BFMatcher matcher ( NORM_HAMMING ); + matcher->match(descriptors_1, descriptors_2, match); + + //-- 第四步:匹配点对筛选 + double min_dist = 10000, max_dist = 0; + + //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 + for (int i = 0; i < descriptors_1.rows; i++) + { + double dist = match[i].distance; + if (dist < min_dist) + min_dist = dist; + if (dist > max_dist) + max_dist = dist; + } + + printf("-- Max dist : %f \n", max_dist); + printf("-- Min dist : %f \n", min_dist); + + //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. + for (int i = 0; i < descriptors_1.rows; i++) + { + if (match[i].distance <= max(2 * min_dist, 30.0)) + { + matches.push_back(match[i]); + } + } +} + +Point2d pixel2cam(const Point2d& p, const Mat& K) +{ + return Point2d((p.x - K.at(0, 2)) / K.at(0, 0), (p.y - K.at(1, 2)) / K.at(1, 1)); +} + +void pose_estimation_2d2d(std::vector keypoints_1, std::vector keypoints_2, + std::vector matches, Mat& R, Mat& t) +{ + // 相机内参,TUM Freiburg2 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + + //-- 把匹配点转换为vector的形式 + vector points1; + vector points2; + + for (int i = 0; i < (int)matches.size(); i++) + { + points1.push_back(keypoints_1[matches[i].queryIdx].pt); + points2.push_back(keypoints_2[matches[i].trainIdx].pt); + } + + //-- 计算基础矩阵 + Mat fundamental_matrix; + fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT); + cout << "fundamental_matrix is " << endl << fundamental_matrix << endl; + + //-- 计算本质矩阵 + Point2d principal_point(325.1, 249.7); //相机光心, TUM dataset标定值 + double focal_length = 521; //相机焦距, TUM dataset标定值 + Mat essential_matrix; + essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point); + cout << "essential_matrix is " << endl << essential_matrix << endl; + + //-- 计算单应矩阵 + Mat homography_matrix; + homography_matrix = findHomography(points1, points2, RANSAC, 3); + cout << "homography_matrix is " << endl << homography_matrix << endl; + + //-- 从本质矩阵中恢复旋转和平移信息. + recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point); + cout << "R is " << endl << R << endl; + cout << "t is " << endl << t << endl; +} diff --git a/ch07/pose_estimation_3d2d.cpp b/ch07/pose_estimation_3d2d.cpp new file mode 100644 index 000000000..f927f3cf7 --- /dev/null +++ b/ch07/pose_estimation_3d2d.cpp @@ -0,0 +1,190 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace cv; + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches); + +// 像素坐标转相机归一化坐标 +Point2d pixel2cam(const Point2d& p, const Mat& K); + +void bundleAdjustment(const vector points_3d, const vector points_2d, const Mat& K, Mat& R, Mat& t); + +int main(int argc, char** argv) +{ + if (argc != 5) + { + cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl; + return 1; + } + //-- 读取图像 + Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); + Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); + + vector keypoints_1, keypoints_2; + vector matches; + find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); + cout << "一共找到了" << matches.size() << "组匹配点" << endl; + + // 建立3D点 + Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + vector pts_3d; + vector pts_2d; + for (DMatch m : matches) + { + ushort d = d1.ptr(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)]; + if (d == 0) // bad depth + continue; + float dd = d / 5000.0; + Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); + pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd)); + pts_2d.push_back(keypoints_2[m.trainIdx].pt); + } + + cout << "3d-2d pairs: " << pts_3d.size() << endl; + + Mat r, t; + solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法 + Mat R; + cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵 + + cout << "R=" << endl << R << endl; + cout << "t=" << endl << t << endl; + + cout << "calling bundle adjustment" << endl; + + bundleAdjustment(pts_3d, pts_2d, K, R, t); +} + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches) +{ + //-- 初始化 + Mat descriptors_1, descriptors_2; + // used in OpenCV3 + Ptr detector = ORB::create(); + Ptr descriptor = ORB::create(); + // use this if you are in OpenCV2 + // Ptr detector = FeatureDetector::create ( "ORB" ); + // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); + Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); + //-- 第一步:检测 Oriented FAST 角点位置 + detector->detect(img_1, keypoints_1); + detector->detect(img_2, keypoints_2); + + //-- 第二步:根据角点位置计算 BRIEF 描述子 + descriptor->compute(img_1, keypoints_1, descriptors_1); + descriptor->compute(img_2, keypoints_2, descriptors_2); + + //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 + vector match; + // BFMatcher matcher ( NORM_HAMMING ); + matcher->match(descriptors_1, descriptors_2, match); + + //-- 第四步:匹配点对筛选 + double min_dist = 10000, max_dist = 0; + + //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 + for (int i = 0; i < descriptors_1.rows; i++) + { + double dist = match[i].distance; + if (dist < min_dist) + min_dist = dist; + if (dist > max_dist) + max_dist = dist; + } + + printf("-- Max dist : %f \n", max_dist); + printf("-- Min dist : %f \n", min_dist); + + //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. + for (int i = 0; i < descriptors_1.rows; i++) + { + if (match[i].distance <= max(2 * min_dist, 30.0)) + { + matches.push_back(match[i]); + } + } +} + +Point2d pixel2cam(const Point2d& p, const Mat& K) +{ + return Point2d((p.x - K.at(0, 2)) / K.at(0, 0), (p.y - K.at(1, 2)) / K.at(1, 1)); +} + +void bundleAdjustment(const vector points_3d, const vector points_2d, const Mat& K, Mat& R, Mat& t) +{ + // 初始化g2o + typedef g2o::BlockSolver> Block; // pose 维度为 6, landmark 维度为 3 + Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse(); // 线性方程求解器 + Block* solver_ptr = new Block(linearSolver); // 矩阵块求解器 + g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); + g2o::SparseOptimizer optimizer; + optimizer.setAlgorithm(solver); + + // vertex + g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose + Eigen::Matrix3d R_mat; + R_mat << R.at(0, 0), R.at(0, 1), R.at(0, 2), R.at(1, 0), R.at(1, 1), + R.at(1, 2), R.at(2, 0), R.at(2, 1), R.at(2, 2); + pose->setId(0); + pose->setEstimate(g2o::SE3Quat(R_mat, Eigen::Vector3d(t.at(0, 0), t.at(1, 0), t.at(2, 0)))); + optimizer.addVertex(pose); + + int index = 1; + for (const Point3f p : points_3d) // landmarks + { + g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ(); + point->setId(index++); + point->setEstimate(Eigen::Vector3d(p.x, p.y, p.z)); + point->setMarginalized(true); // g2o 中必须设置 marg 参见第十讲内容 + optimizer.addVertex(point); + } + + // parameter: camera intrinsics + g2o::CameraParameters* camera = + new g2o::CameraParameters(K.at(0, 0), Eigen::Vector2d(K.at(0, 2), K.at(1, 2)), 0); + camera->setId(0); + optimizer.addParameter(camera); + + // edges + index = 1; + for (const Point2f p : points_2d) + { + g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV(); + edge->setId(index); + edge->setVertex(0, dynamic_cast(optimizer.vertex(index))); + edge->setVertex(1, pose); + edge->setMeasurement(Eigen::Vector2d(p.x, p.y)); + edge->setParameterId(0, 0); + edge->setInformation(Eigen::Matrix2d::Identity()); + optimizer.addEdge(edge); + index++; + } + + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + optimizer.setVerbose(true); + optimizer.initializeOptimization(); + optimizer.optimize(100); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "optimization costs time: " << time_used.count() << " seconds." << endl; + + cout << endl << "after optimization:" << endl; + cout << "T=" << endl << Eigen::Isometry3d(pose->estimate()).matrix() << endl; +} diff --git a/ch07/pose_estimation_3d3d.cpp b/ch07/pose_estimation_3d3d.cpp new file mode 100644 index 000000000..1622278cd --- /dev/null +++ b/ch07/pose_estimation_3d3d.cpp @@ -0,0 +1,294 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace cv; + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches); + +// 像素坐标转相机归一化坐标 +Point2d pixel2cam(const Point2d& p, const Mat& K); + +void pose_estimation_3d3d(const vector& pts1, const vector& pts2, Mat& R, Mat& t); + +void bundleAdjustment(const vector& points_3d, const vector& points_2d, Mat& R, Mat& t); + +// g2o edge +class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, g2o::VertexSE3Expmap> +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW; + EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d& point) : _point(point) + { + } + + virtual void computeError() + { + const g2o::VertexSE3Expmap* pose = static_cast(_vertices[0]); + // measurement is p, point is p' + _error = _measurement - pose->estimate().map(_point); + } + + virtual void linearizeOplus() + { + g2o::VertexSE3Expmap* pose = static_cast(_vertices[0]); + g2o::SE3Quat T(pose->estimate()); + Eigen::Vector3d xyz_trans = T.map(_point); + double x = xyz_trans[0]; + double y = xyz_trans[1]; + double z = xyz_trans[2]; + + _jacobianOplusXi(0, 0) = 0; + _jacobianOplusXi(0, 1) = -z; + _jacobianOplusXi(0, 2) = y; + _jacobianOplusXi(0, 3) = -1; + _jacobianOplusXi(0, 4) = 0; + _jacobianOplusXi(0, 5) = 0; + + _jacobianOplusXi(1, 0) = z; + _jacobianOplusXi(1, 1) = 0; + _jacobianOplusXi(1, 2) = -x; + _jacobianOplusXi(1, 3) = 0; + _jacobianOplusXi(1, 4) = -1; + _jacobianOplusXi(1, 5) = 0; + + _jacobianOplusXi(2, 0) = -y; + _jacobianOplusXi(2, 1) = x; + _jacobianOplusXi(2, 2) = 0; + _jacobianOplusXi(2, 3) = 0; + _jacobianOplusXi(2, 4) = 0; + _jacobianOplusXi(2, 5) = -1; + } + + bool read(istream& in) + { + } + bool write(ostream& out) const + { + } + +protected: + Eigen::Vector3d _point; +}; + +int main(int argc, char** argv) +{ + if (argc != 5) + { + cout << "usage: pose_estimation_3d3d img1 img2 depth1 depth2" << endl; + return 1; + } + //-- 读取图像 + Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); + Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); + + vector keypoints_1, keypoints_2; + vector matches; + find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); + cout << "一共找到了" << matches.size() << "组匹配点" << endl; + + // 建立3D点 + Mat depth1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像 + Mat depth2 = imread(argv[4], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + vector pts1, pts2; + + for (DMatch m : matches) + { + ushort d1 = depth1.ptr(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)]; + ushort d2 = depth2.ptr(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)]; + if (d1 == 0 || d2 == 0) // bad depth + continue; + Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); + Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K); + float dd1 = float(d1) / 5000.0; + float dd2 = float(d2) / 5000.0; + pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1)); + pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2)); + } + + cout << "3d-3d pairs: " << pts1.size() << endl; + Mat R, t; + pose_estimation_3d3d(pts1, pts2, R, t); + cout << "ICP via SVD results: " << endl; + cout << "R = " << R << endl; + cout << "t = " << t << endl; + cout << "R_inv = " << R.t() << endl; + cout << "t_inv = " << -R.t() * t << endl; + + cout << "calling bundle adjustment" << endl; + + bundleAdjustment(pts1, pts2, R, t); + + // verify p1 = R*p2 + t + for (int i = 0; i < 5; i++) + { + cout << "p1 = " << pts1[i] << endl; + cout << "p2 = " << pts2[i] << endl; + cout << "(R*p2+t) = " << R * (Mat_(3, 1) << pts2[i].x, pts2[i].y, pts2[i].z) + t << endl; + cout << endl; + } +} + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches) +{ + //-- 初始化 + Mat descriptors_1, descriptors_2; + // used in OpenCV3 + Ptr detector = ORB::create(); + Ptr descriptor = ORB::create(); + // use this if you are in OpenCV2 + // Ptr detector = FeatureDetector::create ( "ORB" ); + // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); + Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); + //-- 第一步:检测 Oriented FAST 角点位置 + detector->detect(img_1, keypoints_1); + detector->detect(img_2, keypoints_2); + + //-- 第二步:根据角点位置计算 BRIEF 描述子 + descriptor->compute(img_1, keypoints_1, descriptors_1); + descriptor->compute(img_2, keypoints_2, descriptors_2); + + //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 + vector match; + // BFMatcher matcher ( NORM_HAMMING ); + matcher->match(descriptors_1, descriptors_2, match); + + //-- 第四步:匹配点对筛选 + double min_dist = 10000, max_dist = 0; + + //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 + for (int i = 0; i < descriptors_1.rows; i++) + { + double dist = match[i].distance; + if (dist < min_dist) + min_dist = dist; + if (dist > max_dist) + max_dist = dist; + } + + printf("-- Max dist : %f \n", max_dist); + printf("-- Min dist : %f \n", min_dist); + + //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. + for (int i = 0; i < descriptors_1.rows; i++) + { + if (match[i].distance <= max(2 * min_dist, 30.0)) + { + matches.push_back(match[i]); + } + } +} + +Point2d pixel2cam(const Point2d& p, const Mat& K) +{ + return Point2d((p.x - K.at(0, 2)) / K.at(0, 0), (p.y - K.at(1, 2)) / K.at(1, 1)); +} + +void pose_estimation_3d3d(const vector& pts1, const vector& pts2, Mat& R, Mat& t) +{ + Point3f p1, p2; // center of mass + int N = pts1.size(); + for (int i = 0; i < N; i++) + { + p1 += pts1[i]; + p2 += pts2[i]; + } + p1 = Point3f(Vec3f(p1) / N); + p2 = Point3f(Vec3f(p2) / N); + vector q1(N), q2(N); // remove the center + for (int i = 0; i < N; i++) + { + q1[i] = pts1[i] - p1; + q2[i] = pts2[i] - p2; + } + + // compute q1*q2^T + Eigen::Matrix3d W = Eigen::Matrix3d::Zero(); + for (int i = 0; i < N; i++) + { + W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose(); + } + cout << "W=" << W << endl; + + // SVD on W + Eigen::JacobiSVD svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV); + Eigen::Matrix3d U = svd.matrixU(); + Eigen::Matrix3d V = svd.matrixV(); + + if (U.determinant() * V.determinant() < 0) + { + for (int x = 0; x < 3; ++x) + { + U(x, 2) *= -1; + } + } + + cout << "U=" << U << endl; + cout << "V=" << V << endl; + + Eigen::Matrix3d R_ = U * (V.transpose()); + Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z); + + // convert to cv::Mat + R = (Mat_(3, 3) << R_(0, 0), R_(0, 1), R_(0, 2), R_(1, 0), R_(1, 1), R_(1, 2), R_(2, 0), R_(2, 1), R_(2, 2)); + t = (Mat_(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0)); +} + +void bundleAdjustment(const vector& pts1, const vector& pts2, Mat& R, Mat& t) +{ + // 初始化g2o + typedef g2o::BlockSolver> Block; // pose维度为 6, landmark 维度为 3 + Block::LinearSolverType* linearSolver = new g2o::LinearSolverEigen(); // 线性方程求解器 + Block* solver_ptr = new Block(linearSolver); // 矩阵块求解器 + g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr); + g2o::SparseOptimizer optimizer; + optimizer.setAlgorithm(solver); + + // vertex + g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose + pose->setId(0); + pose->setEstimate(g2o::SE3Quat(Eigen::Matrix3d::Identity(), Eigen::Vector3d(0, 0, 0))); + optimizer.addVertex(pose); + + // edges + int index = 1; + vector edges; + for (size_t i = 0; i < pts1.size(); i++) + { + EdgeProjectXYZRGBDPoseOnly* edge = new EdgeProjectXYZRGBDPoseOnly(Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z)); + edge->setId(index); + edge->setVertex(0, dynamic_cast(pose)); + edge->setMeasurement(Eigen::Vector3d(pts1[i].x, pts1[i].y, pts1[i].z)); + edge->setInformation(Eigen::Matrix3d::Identity() * 1e4); + optimizer.addEdge(edge); + index++; + edges.push_back(edge); + } + + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + optimizer.setVerbose(true); + optimizer.initializeOptimization(); + optimizer.optimize(10); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "optimization costs time: " << time_used.count() << " seconds." << endl; + + cout << endl << "after optimization:" << endl; + cout << "T=" << endl << Eigen::Isometry3d(pose->estimate()).matrix() << endl; +} diff --git a/ch07/triangulation.cpp b/ch07/triangulation.cpp new file mode 100644 index 000000000..0f73ea369 --- /dev/null +++ b/ch07/triangulation.cpp @@ -0,0 +1,191 @@ +#include +#include +#include +#include +#include +// #include "extra.h" // used in opencv2 +using namespace std; +using namespace cv; + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches); + +void pose_estimation_2d2d(const std::vector& keypoints_1, const std::vector& keypoints_2, + const std::vector& matches, Mat& R, Mat& t); + +void triangulation(const vector& keypoint_1, const vector& keypoint_2, + const std::vector& matches, const Mat& R, const Mat& t, vector& points); + +// 像素坐标转相机归一化坐标 +Point2f pixel2cam(const Point2d& p, const Mat& K); + +int main(int argc, char** argv) +{ + if (argc != 3) + { + cout << "usage: triangulation img1 img2" << endl; + return 1; + } + //-- 读取图像 + Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); + Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); + + vector keypoints_1, keypoints_2; + vector matches; + find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); + cout << "一共找到了" << matches.size() << "组匹配点" << endl; + + //-- 估计两张图像间运动 + Mat R, t; + pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); + + //-- 三角化 + vector points; + triangulation(keypoints_1, keypoints_2, matches, R, t, points); + + //-- 验证三角化点与特征点的重投影关系 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + for (int i = 0; i < matches.size(); i++) + { + Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K); + Point2d pt1_cam_3d(points[i].x / points[i].z, points[i].y / points[i].z); + + cout << "point in the first camera frame: " << pt1_cam << endl; + cout << "point projected from 3D " << pt1_cam_3d << ", d=" << points[i].z << endl; + + // 第二个图 + Point2f pt2_cam = pixel2cam(keypoints_2[matches[i].trainIdx].pt, K); + Mat pt2_trans = R * (Mat_(3, 1) << points[i].x, points[i].y, points[i].z) + t; + pt2_trans /= pt2_trans.at(2, 0); + cout << "point in the second camera frame: " << pt2_cam << endl; + cout << "point reprojected from second frame: " << pt2_trans.t() << endl; + cout << endl; + } + + return 0; +} + +void find_feature_matches(const Mat& img_1, const Mat& img_2, std::vector& keypoints_1, + std::vector& keypoints_2, std::vector& matches) +{ + //-- 初始化 + Mat descriptors_1, descriptors_2; + // used in OpenCV3 + Ptr detector = ORB::create(); + Ptr descriptor = ORB::create(); + // use this if you are in OpenCV2 + // Ptr detector = FeatureDetector::create ( "ORB" ); + // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); + Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); + //-- 第一步:检测 Oriented FAST 角点位置 + detector->detect(img_1, keypoints_1); + detector->detect(img_2, keypoints_2); + + //-- 第二步:根据角点位置计算 BRIEF 描述子 + descriptor->compute(img_1, keypoints_1, descriptors_1); + descriptor->compute(img_2, keypoints_2, descriptors_2); + + //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 + vector match; + // BFMatcher matcher ( NORM_HAMMING ); + matcher->match(descriptors_1, descriptors_2, match); + + //-- 第四步:匹配点对筛选 + double min_dist = 10000, max_dist = 0; + + //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 + for (int i = 0; i < descriptors_1.rows; i++) + { + double dist = match[i].distance; + if (dist < min_dist) + min_dist = dist; + if (dist > max_dist) + max_dist = dist; + } + + printf("-- Max dist : %f \n", max_dist); + printf("-- Min dist : %f \n", min_dist); + + //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. + for (int i = 0; i < descriptors_1.rows; i++) + { + if (match[i].distance <= max(2 * min_dist, 30.0)) + { + matches.push_back(match[i]); + } + } +} + +void pose_estimation_2d2d(const std::vector& keypoints_1, const std::vector& keypoints_2, + const std::vector& matches, Mat& R, Mat& t) +{ + // 相机内参,TUM Freiburg2 + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + + //-- 把匹配点转换为vector的形式 + vector points1; + vector points2; + + for (int i = 0; i < (int)matches.size(); i++) + { + points1.push_back(keypoints_1[matches[i].queryIdx].pt); + points2.push_back(keypoints_2[matches[i].trainIdx].pt); + } + + //-- 计算基础矩阵 + Mat fundamental_matrix; + fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT); + cout << "fundamental_matrix is " << endl << fundamental_matrix << endl; + + //-- 计算本质矩阵 + Point2d principal_point(325.1, 249.7); //相机主点, TUM dataset标定值 + int focal_length = 521; //相机焦距, TUM dataset标定值 + Mat essential_matrix; + essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point); + cout << "essential_matrix is " << endl << essential_matrix << endl; + + //-- 计算单应矩阵 + Mat homography_matrix; + homography_matrix = findHomography(points1, points2, RANSAC, 3); + cout << "homography_matrix is " << endl << homography_matrix << endl; + + //-- 从本质矩阵中恢复旋转和平移信息. + recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point); + cout << "R is " << endl << R << endl; + cout << "t is " << endl << t << endl; +} + +void triangulation(const vector& keypoint_1, const vector& keypoint_2, + const std::vector& matches, const Mat& R, const Mat& t, vector& points) +{ + Mat T1 = (Mat_(3, 4) << 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0); + Mat T2 = (Mat_(3, 4) << R.at(0, 0), R.at(0, 1), R.at(0, 2), t.at(0, 0), + R.at(1, 0), R.at(1, 1), R.at(1, 2), t.at(1, 0), R.at(2, 0), + R.at(2, 1), R.at(2, 2), t.at(2, 0)); + + Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); + vector pts_1, pts_2; + for (DMatch m : matches) + { + // 将像素坐标转换至相机坐标 + pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K)); + pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K)); + } + + Mat pts_4d; + cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d); + + // 转换成非齐次坐标 + for (int i = 0; i < pts_4d.cols; i++) + { + Mat x = pts_4d.col(i); + x /= x.at(3, 0); // 归一化 + Point3d p(x.at(0, 0), x.at(1, 0), x.at(2, 0)); + points.push_back(p); + } +} + +Point2f pixel2cam(const Point2d& p, const Mat& K) +{ + return Point2f((p.x - K.at(0, 2)) / K.at(0, 0), (p.y - K.at(1, 2)) / K.at(1, 1)); +} diff --git a/ch8/LKFlow/CMakeLists.txt b/ch08/LKFlow/CMakeLists.txt similarity index 100% rename from ch8/LKFlow/CMakeLists.txt rename to ch08/LKFlow/CMakeLists.txt diff --git a/ch08/LKFlow/useLK.cpp b/ch08/LKFlow/useLK.cpp new file mode 100644 index 000000000..398a342f5 --- /dev/null +++ b/ch08/LKFlow/useLK.cpp @@ -0,0 +1,91 @@ +#include +#include +#include +#include +#include +using namespace std; + +#include +#include +#include +#include + +int main(int argc, char** argv) +{ + if (argc != 2) + { + cout << "usage: useLK path_to_dataset" << endl; + return 1; + } + string path_to_dataset = argv[1]; + string associate_file = path_to_dataset + "/associate.txt"; + + ifstream fin(associate_file); + if (!fin) + { + cerr << "I cann't find associate.txt!" << endl; + return 1; + } + + string rgb_file, depth_file, time_rgb, time_depth; + list keypoints; // 因为要删除跟踪失败的点,使用list + cv::Mat color, depth, last_color; + + for (int index = 0; index < 100; index++) + { + fin >> time_rgb >> rgb_file >> time_depth >> depth_file; + color = cv::imread(path_to_dataset + "/" + rgb_file); + depth = cv::imread(path_to_dataset + "/" + depth_file, -1); + if (index == 0) + { + // 对第一帧提取FAST特征点 + vector kps; + cv::Ptr detector = cv::FastFeatureDetector::create(); + detector->detect(color, kps); + for (auto kp : kps) + keypoints.push_back(kp.pt); + last_color = color; + continue; + } + if (color.data == nullptr || depth.data == nullptr) + continue; + // 对其他帧用LK跟踪特征点 + vector next_keypoints; + vector prev_keypoints; + for (auto kp : keypoints) + prev_keypoints.push_back(kp); + vector status; + vector error; + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + cv::calcOpticalFlowPyrLK(last_color, color, prev_keypoints, next_keypoints, status, error); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "LK Flow use time:" << time_used.count() << " seconds." << endl; + // 把跟丢的点删掉 + int i = 0; + for (auto iter = keypoints.begin(); iter != keypoints.end(); i++) + { + if (status[i] == 0) + { + iter = keypoints.erase(iter); + continue; + } + *iter = next_keypoints[i]; + iter++; + } + cout << "tracked keypoints: " << keypoints.size() << endl; + if (keypoints.size() == 0) + { + cout << "all keypoints are lost." << endl; + break; + } + // 画出 keypoints + cv::Mat img_show = color.clone(); + for (auto kp : keypoints) + cv::circle(img_show, kp, 10, cv::Scalar(0, 240, 0), 1); + cv::imshow("corners", img_show); + cv::waitKey(0); + last_color = color; + } + return 0; +} \ No newline at end of file diff --git a/ch8/data/data.tar.gz b/ch08/data/data.tar.gz similarity index 100% rename from ch8/data/data.tar.gz rename to ch08/data/data.tar.gz diff --git a/ch8/directMethod/CMakeLists.txt b/ch08/directMethod/CMakeLists.txt similarity index 100% rename from ch8/directMethod/CMakeLists.txt rename to ch08/directMethod/CMakeLists.txt diff --git a/ch8/directMethod/cmake_modules/FindG2O.cmake b/ch08/directMethod/cmake_modules/FindG2O.cmake similarity index 100% rename from ch8/directMethod/cmake_modules/FindG2O.cmake rename to ch08/directMethod/cmake_modules/FindG2O.cmake diff --git a/ch08/directMethod/direct_semidense.cpp b/ch08/directMethod/direct_semidense.cpp new file mode 100644 index 000000000..4960f4b31 --- /dev/null +++ b/ch08/directMethod/direct_semidense.cpp @@ -0,0 +1,297 @@ +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace g2o; + +/******************************************** + * 本节演示了RGBD上的半稠密直接法 + ********************************************/ + +// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值 +struct Measurement +{ + Measurement(Eigen::Vector3d p, float g) : pos_world(p), grayscale(g) + { + } + Eigen::Vector3d pos_world; + float grayscale; +}; + +inline Eigen::Vector3d project2Dto3D(int x, int y, int d, float fx, float fy, float cx, float cy, float scale) +{ + float zz = float(d) / scale; + float xx = zz * (x - cx) / fx; + float yy = zz * (y - cy) / fy; + return Eigen::Vector3d(xx, yy, zz); +} + +inline Eigen::Vector2d project3Dto2D(float x, float y, float z, float fx, float fy, float cx, float cy) +{ + float u = fx * x / z + cx; + float v = fy * y / z + cy; + return Eigen::Vector2d(u, v); +} + +// 直接法估计位姿 +// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿 +// 返回:true为成功,false失败 +bool poseEstimationDirect(const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, + Eigen::Isometry3d& Tcw); + +// project a 3d point into an image plane, the error is photometric error +// an unary edge with one vertex SE3Expmap (the pose of camera) +class EdgeSE3ProjectDirect : public BaseUnaryEdge<1, double, VertexSE3Expmap> +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + + EdgeSE3ProjectDirect() + { + } + + EdgeSE3ProjectDirect(Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image) + : x_world_(point), fx_(fx), fy_(fy), cx_(cx), cy_(cy), image_(image) + { + } + + virtual void computeError() + { + const VertexSE3Expmap* v = static_cast(_vertices[0]); + Eigen::Vector3d x_local = v->estimate().map(x_world_); + float x = x_local[0] * fx_ / x_local[2] + cx_; + float y = x_local[1] * fy_ / x_local[2] + cy_; + // check x,y is in the image + if (x - 4 < 0 || (x + 4) > image_->cols || (y - 4) < 0 || (y + 4) > image_->rows) + { + _error(0, 0) = 0.0; + this->setLevel(1); + } + else + { + _error(0, 0) = getPixelValue(x, y) - _measurement; + } + } + + // plus in manifold + virtual void linearizeOplus() + { + if (level() == 1) + { + _jacobianOplusXi = Eigen::Matrix::Zero(); + return; + } + VertexSE3Expmap* vtx = static_cast(_vertices[0]); + Eigen::Vector3d xyz_trans = vtx->estimate().map(x_world_); // q in book + + double x = xyz_trans[0]; + double y = xyz_trans[1]; + double invz = 1.0 / xyz_trans[2]; + double invz_2 = invz * invz; + + float u = x * fx_ * invz + cx_; + float v = y * fy_ * invz + cy_; + + // jacobian from se3 to u,v + // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation + Eigen::Matrix jacobian_uv_ksai; + + jacobian_uv_ksai(0, 0) = -x * y * invz_2 * fx_; + jacobian_uv_ksai(0, 1) = (1 + (x * x * invz_2)) * fx_; + jacobian_uv_ksai(0, 2) = -y * invz * fx_; + jacobian_uv_ksai(0, 3) = invz * fx_; + jacobian_uv_ksai(0, 4) = 0; + jacobian_uv_ksai(0, 5) = -x * invz_2 * fx_; + + jacobian_uv_ksai(1, 0) = -(1 + y * y * invz_2) * fy_; + jacobian_uv_ksai(1, 1) = x * y * invz_2 * fy_; + jacobian_uv_ksai(1, 2) = x * invz * fy_; + jacobian_uv_ksai(1, 3) = 0; + jacobian_uv_ksai(1, 4) = invz * fy_; + jacobian_uv_ksai(1, 5) = -y * invz_2 * fy_; + + Eigen::Matrix jacobian_pixel_uv; + + jacobian_pixel_uv(0, 0) = (getPixelValue(u + 1, v) - getPixelValue(u - 1, v)) / 2; + jacobian_pixel_uv(0, 1) = (getPixelValue(u, v + 1) - getPixelValue(u, v - 1)) / 2; + + _jacobianOplusXi = jacobian_pixel_uv * jacobian_uv_ksai; + } + + // dummy read and write functions because we don't care... + virtual bool read(std::istream& in) + { + } + virtual bool write(std::ostream& out) const + { + } + +protected: + // get a gray scale value from reference image (bilinear interpolated) + inline float getPixelValue(float x, float y) + { + uchar* data = &image_->data[int(y) * image_->step + int(x)]; + float xx = x - floor(x); + float yy = y - floor(y); + return float((1 - xx) * (1 - yy) * data[0] + xx * (1 - yy) * data[1] + (1 - xx) * yy * data[image_->step] + + xx * yy * data[image_->step + 1]); + } + +public: + Eigen::Vector3d x_world_; // 3D point in world frame + float cx_ = 0, cy_ = 0, fx_ = 0, fy_ = 0; // Camera intrinsics + cv::Mat* image_ = nullptr; // reference image +}; + +int main(int argc, char** argv) +{ + if (argc != 2) + { + cout << "usage: useLK path_to_dataset" << endl; + return 1; + } + srand((unsigned int)time(0)); + string path_to_dataset = argv[1]; + string associate_file = path_to_dataset + "/associate.txt"; + + ifstream fin(associate_file); + + string rgb_file, depth_file, time_rgb, time_depth; + cv::Mat color, depth, gray; + vector measurements; + // 相机内参 + float cx = 325.5; + float cy = 253.5; + float fx = 518.0; + float fy = 519.0; + float depth_scale = 1000.0; + Eigen::Matrix3f K; + K << fx, 0.f, cx, 0.f, fy, cy, 0.f, 0.f, 1.0f; + + Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity(); + + cv::Mat prev_color; + // 我们以第一个图像为参考,对后续图像和参考图像做直接法 + for (int index = 0; index < 10; index++) + { + cout << "*********** loop " << index << " ************" << endl; + fin >> time_rgb >> rgb_file >> time_depth >> depth_file; + color = cv::imread(path_to_dataset + "/" + rgb_file); + depth = cv::imread(path_to_dataset + "/" + depth_file, -1); + if (color.data == nullptr || depth.data == nullptr) + continue; + cv::cvtColor(color, gray, cv::COLOR_BGR2GRAY); + if (index == 0) + { + // select the pixels with high gradiants + for (int x = 10; x < gray.cols - 10; x++) + for (int y = 10; y < gray.rows - 10; y++) + { + Eigen::Vector2d delta(gray.ptr(y)[x + 1] - gray.ptr(y)[x - 1], + gray.ptr(y + 1)[x] - gray.ptr(y - 1)[x]); + if (delta.norm() < 50) + continue; + ushort d = depth.ptr(y)[x]; + if (d == 0) + continue; + Eigen::Vector3d p3d = project2Dto3D(x, y, d, fx, fy, cx, cy, depth_scale); + float grayscale = float(gray.ptr(y)[x]); + measurements.push_back(Measurement(p3d, grayscale)); + } + prev_color = color.clone(); + cout << "add total " << measurements.size() << " measurements." << endl; + continue; + } + // 使用直接法计算相机运动 + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + poseEstimationDirect(measurements, &gray, K, Tcw); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "direct method costs time: " << time_used.count() << " seconds." << endl; + cout << "Tcw=" << Tcw.matrix() << endl; + + // plot the feature points + cv::Mat img_show(color.rows * 2, color.cols, CV_8UC3); + prev_color.copyTo(img_show(cv::Rect(0, 0, color.cols, color.rows))); + color.copyTo(img_show(cv::Rect(0, color.rows, color.cols, color.rows))); + for (Measurement m : measurements) + { + if (rand() > RAND_MAX / 5) + continue; + Eigen::Vector3d p = m.pos_world; + Eigen::Vector2d pixel_prev = project3Dto2D(p(0, 0), p(1, 0), p(2, 0), fx, fy, cx, cy); + Eigen::Vector3d p2 = Tcw * m.pos_world; + Eigen::Vector2d pixel_now = project3Dto2D(p2(0, 0), p2(1, 0), p2(2, 0), fx, fy, cx, cy); + if (pixel_now(0, 0) < 0 || pixel_now(0, 0) >= color.cols || pixel_now(1, 0) < 0 || pixel_now(1, 0) >= color.rows) + continue; + + float b = 0; + float g = 250; + float r = 0; + img_show.ptr(pixel_prev(1, 0))[int(pixel_prev(0, 0)) * 3] = b; + img_show.ptr(pixel_prev(1, 0))[int(pixel_prev(0, 0)) * 3 + 1] = g; + img_show.ptr(pixel_prev(1, 0))[int(pixel_prev(0, 0)) * 3 + 2] = r; + + img_show.ptr(pixel_now(1, 0) + color.rows)[int(pixel_now(0, 0)) * 3] = b; + img_show.ptr(pixel_now(1, 0) + color.rows)[int(pixel_now(0, 0)) * 3 + 1] = g; + img_show.ptr(pixel_now(1, 0) + color.rows)[int(pixel_now(0, 0)) * 3 + 2] = r; + cv::circle(img_show, cv::Point2d(pixel_prev(0, 0), pixel_prev(1, 0)), 4, cv::Scalar(b, g, r), 2); + cv::circle(img_show, cv::Point2d(pixel_now(0, 0), pixel_now(1, 0) + color.rows), 4, cv::Scalar(b, g, r), 2); + } + cv::imshow("result", img_show); + cv::waitKey(0); + } + return 0; +} + +bool poseEstimationDirect(const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& K, + Eigen::Isometry3d& Tcw) +{ + // 初始化g2o + typedef g2o::BlockSolver> DirectBlock; // 求解的向量是6*1的 + DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense(); + DirectBlock* solver_ptr = new DirectBlock(linearSolver); + // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N + g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); // L-M + g2o::SparseOptimizer optimizer; + optimizer.setAlgorithm(solver); + optimizer.setVerbose(true); + + g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); + pose->setEstimate(g2o::SE3Quat(Tcw.rotation(), Tcw.translation())); + pose->setId(0); + optimizer.addVertex(pose); + + // 添加边 + int id = 1; + for (Measurement m : measurements) + { + EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect(m.pos_world, K(0, 0), K(1, 1), K(0, 2), K(1, 2), gray); + edge->setVertex(0, pose); + edge->setMeasurement(m.grayscale); + edge->setInformation(Eigen::Matrix::Identity()); + edge->setId(id++); + optimizer.addEdge(edge); + } + cout << "edges in graph: " << optimizer.edges().size() << endl; + optimizer.initializeOptimization(); + optimizer.optimize(30); + Tcw = pose->estimate(); +} diff --git a/ch08/directMethod/direct_sparse.cpp b/ch08/directMethod/direct_sparse.cpp new file mode 100644 index 000000000..663e91961 --- /dev/null +++ b/ch08/directMethod/direct_sparse.cpp @@ -0,0 +1,292 @@ +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace g2o; + +/******************************************** + * 本节演示了RGBD上的稀疏直接法 + ********************************************/ + +// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值 +struct Measurement +{ + Measurement(Eigen::Vector3d p, float g) : pos_world(p), grayscale(g) + { + } + Eigen::Vector3d pos_world; + float grayscale; +}; + +inline Eigen::Vector3d project2Dto3D(int x, int y, int d, float fx, float fy, float cx, float cy, float scale) +{ + float zz = float(d) / scale; + float xx = zz * (x - cx) / fx; + float yy = zz * (y - cy) / fy; + return Eigen::Vector3d(xx, yy, zz); +} + +inline Eigen::Vector2d project3Dto2D(float x, float y, float z, float fx, float fy, float cx, float cy) +{ + float u = fx * x / z + cx; + float v = fy * y / z + cy; + return Eigen::Vector2d(u, v); +} + +// 直接法估计位姿 +// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿 +// 返回:true为成功,false失败 +bool poseEstimationDirect(const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, + Eigen::Isometry3d& Tcw); + +// project a 3d point into an image plane, the error is photometric error +// an unary edge with one vertex SE3Expmap (the pose of camera) +class EdgeSE3ProjectDirect : public BaseUnaryEdge<1, double, VertexSE3Expmap> +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + + EdgeSE3ProjectDirect() + { + } + + EdgeSE3ProjectDirect(Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image) + : x_world_(point), fx_(fx), fy_(fy), cx_(cx), cy_(cy), image_(image) + { + } + + virtual void computeError() + { + const VertexSE3Expmap* v = static_cast(_vertices[0]); + Eigen::Vector3d x_local = v->estimate().map(x_world_); + float x = x_local[0] * fx_ / x_local[2] + cx_; + float y = x_local[1] * fy_ / x_local[2] + cy_; + // check x,y is in the image + if (x - 4 < 0 || (x + 4) > image_->cols || (y - 4) < 0 || (y + 4) > image_->rows) + { + _error(0, 0) = 0.0; + this->setLevel(1); + } + else + { + _error(0, 0) = getPixelValue(x, y) - _measurement; + } + } + + // plus in manifold + virtual void linearizeOplus() + { + if (level() == 1) + { + _jacobianOplusXi = Eigen::Matrix::Zero(); + return; + } + VertexSE3Expmap* vtx = static_cast(_vertices[0]); + Eigen::Vector3d xyz_trans = vtx->estimate().map(x_world_); // q in book + + double x = xyz_trans[0]; + double y = xyz_trans[1]; + double invz = 1.0 / xyz_trans[2]; + double invz_2 = invz * invz; + + float u = x * fx_ * invz + cx_; + float v = y * fy_ * invz + cy_; + + // jacobian from se3 to u,v + // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation + Eigen::Matrix jacobian_uv_ksai; + + jacobian_uv_ksai(0, 0) = -x * y * invz_2 * fx_; + jacobian_uv_ksai(0, 1) = (1 + (x * x * invz_2)) * fx_; + jacobian_uv_ksai(0, 2) = -y * invz * fx_; + jacobian_uv_ksai(0, 3) = invz * fx_; + jacobian_uv_ksai(0, 4) = 0; + jacobian_uv_ksai(0, 5) = -x * invz_2 * fx_; + + jacobian_uv_ksai(1, 0) = -(1 + y * y * invz_2) * fy_; + jacobian_uv_ksai(1, 1) = x * y * invz_2 * fy_; + jacobian_uv_ksai(1, 2) = x * invz * fy_; + jacobian_uv_ksai(1, 3) = 0; + jacobian_uv_ksai(1, 4) = invz * fy_; + jacobian_uv_ksai(1, 5) = -y * invz_2 * fy_; + + Eigen::Matrix jacobian_pixel_uv; + + jacobian_pixel_uv(0, 0) = (getPixelValue(u + 1, v) - getPixelValue(u - 1, v)) / 2; + jacobian_pixel_uv(0, 1) = (getPixelValue(u, v + 1) - getPixelValue(u, v - 1)) / 2; + + _jacobianOplusXi = jacobian_pixel_uv * jacobian_uv_ksai; + } + + // dummy read and write functions because we don't care... + virtual bool read(std::istream& in) + { + } + virtual bool write(std::ostream& out) const + { + } + +protected: + // get a gray scale value from reference image (bilinear interpolated) + inline float getPixelValue(float x, float y) + { + uchar* data = &image_->data[int(y) * image_->step + int(x)]; + float xx = x - floor(x); + float yy = y - floor(y); + return float((1 - xx) * (1 - yy) * data[0] + xx * (1 - yy) * data[1] + (1 - xx) * yy * data[image_->step] + + xx * yy * data[image_->step + 1]); + } + +public: + Eigen::Vector3d x_world_; // 3D point in world frame + float cx_ = 0, cy_ = 0, fx_ = 0, fy_ = 0; // Camera intrinsics + cv::Mat* image_ = nullptr; // reference image +}; + +int main(int argc, char** argv) +{ + if (argc != 2) + { + cout << "usage: useLK path_to_dataset" << endl; + return 1; + } + srand((unsigned int)time(0)); + string path_to_dataset = argv[1]; + string associate_file = path_to_dataset + "/associate.txt"; + + ifstream fin(associate_file); + + string rgb_file, depth_file, time_rgb, time_depth; + cv::Mat color, depth, gray; + vector measurements; + // 相机内参 + float cx = 325.5; + float cy = 253.5; + float fx = 518.0; + float fy = 519.0; + float depth_scale = 1000.0; + Eigen::Matrix3f K; + K << fx, 0.f, cx, 0.f, fy, cy, 0.f, 0.f, 1.0f; + + Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity(); + + cv::Mat prev_color; + // 我们以第一个图像为参考,对后续图像和参考图像做直接法 + for (int index = 0; index < 10; index++) + { + cout << "*********** loop " << index << " ************" << endl; + fin >> time_rgb >> rgb_file >> time_depth >> depth_file; + color = cv::imread(path_to_dataset + "/" + rgb_file); + depth = cv::imread(path_to_dataset + "/" + depth_file, -1); + if (color.data == nullptr || depth.data == nullptr) + continue; + cv::cvtColor(color, gray, cv::COLOR_BGR2GRAY); + if (index == 0) + { + // 对第一帧提取FAST特征点 + vector keypoints; + cv::Ptr detector = cv::FastFeatureDetector::create(); + detector->detect(color, keypoints); + for (auto kp : keypoints) + { + // 去掉邻近边缘处的点 + if (kp.pt.x < 20 || kp.pt.y < 20 || (kp.pt.x + 20) > color.cols || (kp.pt.y + 20) > color.rows) + continue; + ushort d = depth.ptr(cvRound(kp.pt.y))[cvRound(kp.pt.x)]; + if (d == 0) + continue; + Eigen::Vector3d p3d = project2Dto3D(kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale); + float grayscale = float(gray.ptr(cvRound(kp.pt.y))[cvRound(kp.pt.x)]); + measurements.push_back(Measurement(p3d, grayscale)); + } + prev_color = color.clone(); + continue; + } + // 使用直接法计算相机运动 + chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); + poseEstimationDirect(measurements, &gray, K, Tcw); + chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); + chrono::duration time_used = chrono::duration_cast>(t2 - t1); + cout << "direct method costs time: " << time_used.count() << " seconds." << endl; + cout << "Tcw=" << Tcw.matrix() << endl; + + // plot the feature points + cv::Mat img_show(color.rows * 2, color.cols, CV_8UC3); + prev_color.copyTo(img_show(cv::Rect(0, 0, color.cols, color.rows))); + color.copyTo(img_show(cv::Rect(0, color.rows, color.cols, color.rows))); + for (Measurement m : measurements) + { + if (rand() > RAND_MAX / 5) + continue; + Eigen::Vector3d p = m.pos_world; + Eigen::Vector2d pixel_prev = project3Dto2D(p(0, 0), p(1, 0), p(2, 0), fx, fy, cx, cy); + Eigen::Vector3d p2 = Tcw * m.pos_world; + Eigen::Vector2d pixel_now = project3Dto2D(p2(0, 0), p2(1, 0), p2(2, 0), fx, fy, cx, cy); + if (pixel_now(0, 0) < 0 || pixel_now(0, 0) >= color.cols || pixel_now(1, 0) < 0 || pixel_now(1, 0) >= color.rows) + continue; + + float b = 255 * float(rand()) / RAND_MAX; + float g = 255 * float(rand()) / RAND_MAX; + float r = 255 * float(rand()) / RAND_MAX; + cv::circle(img_show, cv::Point2d(pixel_prev(0, 0), pixel_prev(1, 0)), 8, cv::Scalar(b, g, r), 2); + cv::circle(img_show, cv::Point2d(pixel_now(0, 0), pixel_now(1, 0) + color.rows), 8, cv::Scalar(b, g, r), 2); + cv::line(img_show, cv::Point2d(pixel_prev(0, 0), pixel_prev(1, 0)), + cv::Point2d(pixel_now(0, 0), pixel_now(1, 0) + color.rows), cv::Scalar(b, g, r), 1); + } + cv::imshow("result", img_show); + cv::waitKey(0); + } + return 0; +} + +bool poseEstimationDirect(const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& K, + Eigen::Isometry3d& Tcw) +{ + // 初始化g2o + typedef g2o::BlockSolver> DirectBlock; // 求解的向量是6*1的 + DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense(); + DirectBlock* solver_ptr = new DirectBlock(linearSolver); + // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N + g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); // L-M + g2o::SparseOptimizer optimizer; + optimizer.setAlgorithm(solver); + optimizer.setVerbose(true); + + g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); + pose->setEstimate(g2o::SE3Quat(Tcw.rotation(), Tcw.translation())); + pose->setId(0); + optimizer.addVertex(pose); + + // 添加边 + int id = 1; + for (Measurement m : measurements) + { + EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect(m.pos_world, K(0, 0), K(1, 1), K(0, 2), K(1, 2), gray); + edge->setVertex(0, pose); + edge->setMeasurement(m.grayscale); + edge->setInformation(Eigen::Matrix::Identity()); + edge->setId(id++); + optimizer.addEdge(edge); + } + cout << "edges in graph: " << optimizer.edges().size() << endl; + optimizer.initializeOptimization(); + optimizer.optimize(30); + Tcw = pose->estimate(); +} diff --git a/ch8/directMethod/error.txt b/ch08/directMethod/error.txt similarity index 100% rename from ch8/directMethod/error.txt rename to ch08/directMethod/error.txt diff --git a/ch8/directMethod/error_LM.txt b/ch08/directMethod/error_LM.txt similarity index 100% rename from ch8/directMethod/error_LM.txt rename to ch08/directMethod/error_LM.txt diff --git a/ch2/helloSLAM.cpp b/ch2/helloSLAM.cpp deleted file mode 100644 index fad53f7bd..000000000 --- a/ch2/helloSLAM.cpp +++ /dev/null @@ -1,8 +0,0 @@ -#include -using namespace std; - -int main( int argc, char** argv ) -{ - cout<<"Hello SLAM!"< -using namespace std; -#include -// Eigen 部分 -#include -// 稠密矩阵的代数运算(逆,特征值等) -#include - -#define MATRIX_SIZE 50 - -/**************************** -* 本程序演示了 Eigen 基本类型的使用 -****************************/ - -int main( int argc, char** argv ) -{ - // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列 - // 声明一个2*3的float矩阵 - Eigen::Matrix matrix_23; - - // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix - // 例如 Vector3d 实质上是 Eigen::Matrix,即三维向量 - Eigen::Vector3d v_3d; - // 这是一样的 - Eigen::Matrix vd_3d; - - // Matrix3d 实质上是 Eigen::Matrix - Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零 - // 如果不确定矩阵大小,可以使用动态大小的矩阵 - Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic; - // 更简单的 - Eigen::MatrixXd matrix_x; - // 这种类型还有很多,我们不一一列举 - - // 下面是对Eigen阵的操作 - // 输入数据(初始化) - matrix_23 << 1, 2, 3, 4, 5, 6; - // 输出 - cout << matrix_23 << endl; - - // 用()访问矩阵中的元素 - for (int i=0; i<2; i++) { - for (int j=0; j<3; j++) - cout< result_wrong_type = matrix_23 * v_3d; - // 应该显式转换 - Eigen::Matrix result = matrix_23.cast() * v_3d; - cout << result << endl; - - Eigen::Matrix result2 = matrix_23 * vd_3d; - cout << result2 << endl; - - // 同样你不能搞错矩阵的维度 - // 试着取消下面的注释,看看Eigen会报什么错 - // Eigen::Matrix result_wrong_dimension = matrix_23.cast() * v_3d; - - // 一些矩阵运算 - // 四则运算就不演示了,直接用+-*/即可。 - matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵 - cout << matrix_33 << endl << endl; - - cout << matrix_33.transpose() << endl; // 转置 - cout << matrix_33.sum() << endl; // 各元素和 - cout << matrix_33.trace() << endl; // 迹 - cout << 10*matrix_33 << endl; // 数乘 - cout << matrix_33.inverse() << endl; // 逆 - cout << matrix_33.determinant() << endl; // 行列式 - - // 特征值 - // 实对称矩阵可以保证对角化成功 - Eigen::SelfAdjointEigenSolver eigen_solver ( matrix_33.transpose()*matrix_33 ); - cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl; - cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl; - - // 解方程 - // 我们求解 matrix_NN * x = v_Nd 这个方程 - // N的大小在前边的宏里定义,它由随机数生成 - // 直接求逆自然是最直接的,但是求逆运算量大 - - Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN; - matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE ); - Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd; - v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 ); - - clock_t time_stt = clock(); // 计时 - // 直接求逆 - Eigen::Matrix x = matrix_NN.inverse()*v_Nd; - cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl; - - // 通常用矩阵分解来求,例如QR分解,速度会快很多 - time_stt = clock(); - x = matrix_NN.colPivHouseholderQr().solve(v_Nd); - cout <<"time use in Qr decomposition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl; - - return 0; -} diff --git a/ch3/useGeometry/eigenGeometry.cpp b/ch3/useGeometry/eigenGeometry.cpp deleted file mode 100644 index 5d88f0a63..000000000 --- a/ch3/useGeometry/eigenGeometry.cpp +++ /dev/null @@ -1,60 +0,0 @@ -#include -#include -using namespace std; - -#include -// Eigen 几何模块 -#include - -/**************************** -* 本程序演示了 Eigen 几何模块的使用方法 -****************************/ - -int main ( int argc, char** argv ) -{ - // Eigen/Geometry 模块提供了各种旋转和平移的表示 - // 3D 旋转矩阵直接使用 Matrix3d 或 Matrix3f - Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity(); - // 旋转向量使用 AngleAxis, 它底层不直接是Matrix,但运算可以当作矩阵(因为重载了运算符) - Eigen::AngleAxisd rotation_vector ( M_PI/4, Eigen::Vector3d ( 0,0,1 ) ); //沿 Z 轴旋转 45 度 - cout .precision(3); - cout<<"rotation matrix =\n"<> (istream& in, RotationMatrix& r ) -{ - return in; -} - -struct TranslationVector -{ - Vector3d trans = Vector3d(0,0,0); -}; - -ostream& operator << (ostream& out, const TranslationVector& t) -{ - out<<"=["<> ( istream& in, TranslationVector& t) -{ - return in; -} - -struct QuaternionDraw -{ - Quaterniond q; -}; - -ostream& operator << (ostream& out, const QuaternionDraw quat ) -{ - auto c = quat.q.coeffs(); - out<<"=["<> (istream& in, const QuaternionDraw quat) -{ - return in; -} - -int main ( int argc, char** argv ) -{ - pangolin::CreateWindowAndBind ( "visualize geometry", 1000, 600 ); - glEnable ( GL_DEPTH_TEST ); - pangolin::OpenGlRenderState s_cam ( - pangolin::ProjectionMatrix ( 1000, 600, 420, 420, 500, 300, 0.1, 1000 ), - pangolin::ModelViewLookAt ( 3,3,3,0,0,0,pangolin::AxisY ) - ); - - const int UI_WIDTH = 500; - - pangolin::View& d_cam = pangolin::CreateDisplay().SetBounds(0.0, 1.0, pangolin::Attach::Pix(UI_WIDTH), 1.0, -1000.0f/600.0f).SetHandler(new pangolin::Handler3D(s_cam)); - - // ui - pangolin::Var rotation_matrix("ui.R", RotationMatrix()); - pangolin::Var translation_vector("ui.t", TranslationVector()); - pangolin::Var euler_angles("ui.rpy", TranslationVector()); - pangolin::Var quaternion("ui.q", QuaternionDraw()); - pangolin::CreatePanel("ui") - .SetBounds(0.0, 1.0, 0.0, pangolin::Attach::Pix(UI_WIDTH)); - - while ( !pangolin::ShouldQuit() ) - { - glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); - - d_cam.Activate( s_cam ); - - pangolin::OpenGlMatrix matrix = s_cam.GetModelViewMatrix(); - Matrix m = matrix; - // m = m.inverse(); - RotationMatrix R; - for (int i=0; i<3; i++) - for (int j=0; j<3; j++) - R.matrix(i,j) = m(j,i); - rotation_matrix = R; - - TranslationVector t; - t.trans = Vector3d(m(0,3), m(1,3), m(2,3)); - t.trans = -R.matrix*t.trans; - translation_vector = t; - - TranslationVector euler; - euler.trans = R.matrix.transpose().eulerAngles(2,1,0); - euler_angles = euler; - - QuaternionDraw quat; - quat.q = Quaterniond(R.matrix); - quaternion = quat; - - glColor3f(1.0,1.0,1.0); - - pangolin::glDrawColouredCube(); - // draw the original axis - glLineWidth(3); - glColor3f ( 0.8f,0.f,0.f ); - glBegin ( GL_LINES ); - glVertex3f( 0,0,0 ); - glVertex3f( 10,0,0 ); - glColor3f( 0.f,0.8f,0.f); - glVertex3f( 0,0,0 ); - glVertex3f( 0,10,0 ); - glColor3f( 0.2f,0.2f,1.f); - glVertex3f( 0,0,0 ); - glVertex3f( 0,0,10 ); - glEnd(); - - pangolin::FinishFrame(); - } -} diff --git a/ch4/useSophus/useSophus.cpp b/ch4/useSophus/useSophus.cpp deleted file mode 100644 index 479ecc359..000000000 --- a/ch4/useSophus/useSophus.cpp +++ /dev/null @@ -1,64 +0,0 @@ -#include -#include -using namespace std; - -#include -#include - -#include "sophus/so3.h" -#include "sophus/se3.h" - -int main( int argc, char** argv ) -{ - // 沿Z轴转90度的旋转矩阵 - Eigen::Matrix3d R = Eigen::AngleAxisd(M_PI/2, Eigen::Vector3d(0,0,1)).toRotationMatrix(); - - Sophus::SO3 SO3_R(R); // Sophus::SO(3)可以直接从旋转矩阵构造 - Sophus::SO3 SO3_v( 0, 0, M_PI/2 ); // 亦可从旋转向量构造 - Eigen::Quaterniond q(R); // 或者四元数 - Sophus::SO3 SO3_q( q ); - // 上述表达方式都是等价的 - // 输出SO(3)时,以so(3)形式输出 - cout<<"SO(3) from matrix: "< ( y ); // row_ptr是第y行的头指针 - for ( size_t x=0; x time_used = chrono::duration_cast>( t2-t1 ); - cout<<"遍历图像用时:"< -#include -using namespace std; -#include -#include -#include -#include // for formating strings -#include -#include -#include - -int main( int argc, char** argv ) -{ - vector colorImgs, depthImgs; // 彩色图和深度图 - vector> poses; // 相机位姿 - - ifstream fin("./pose.txt"); - if (!fin) - { - cerr<<"请在有pose.txt的目录下运行此程序"<>d; - Eigen::Quaterniond q( data[6], data[3], data[4], data[5] ); - Eigen::Isometry3d T(q); - T.pretranslate( Eigen::Vector3d( data[0], data[1], data[2] )); - poses.push_back( T ); - } - - // 计算点云并拼接 - // 相机内参 - double cx = 325.5; - double cy = 253.5; - double fx = 518.0; - double fy = 519.0; - double depthScale = 1000.0; - - cout<<"正在将图像转换为点云..."< PointCloud; - - // 新建一个点云 - PointCloud::Ptr pointCloud( new PointCloud ); - for ( int i=0; i<5; i++ ) - { - cout<<"转换图像中: "< ( v )[u]; // 深度值 - if ( d==0 ) continue; // 为0表示没有测量到 - Eigen::Vector3d point; - point[2] = double(d)/depthScale; - point[0] = (u-cx)*point[2]/fx; - point[1] = (v-cy)*point[2]/fy; - Eigen::Vector3d pointWorld = T*point; - - PointT p ; - p.x = pointWorld[0]; - p.y = pointWorld[1]; - p.z = pointWorld[2]; - p.b = color.data[ v*color.step+u*color.channels() ]; - p.g = color.data[ v*color.step+u*color.channels()+1 ]; - p.r = color.data[ v*color.step+u*color.channels()+2 ]; - pointCloud->points.push_back( p ); - } - } - - pointCloud->is_dense = false; - cout<<"点云共有"<size()<<"个点."< -#include -#include -#include - -using namespace std; - -// 代价函数的计算模型 -struct CURVE_FITTING_COST -{ - CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {} - // 残差的计算 - template - bool operator() ( - const T* const abc, // 模型参数,有3维 - T* residual ) const // 残差 - { - residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] ); // y-exp(ax^2+bx+c) - return true; - } - const double _x, _y; // x,y数据 -}; - -int main ( int argc, char** argv ) -{ - double a=1.0, b=2.0, c=1.0; // 真实参数值 - int N=100; // 数据点 - double w_sigma=1.0; // 噪声Sigma值 - cv::RNG rng; // OpenCV随机数产生器 - double abc[3] = {0,0,0}; // abc参数的估计值 - - vector x_data, y_data; // 数据 - - cout<<"generating data: "< ( - new CURVE_FITTING_COST ( x_data[i], y_data[i] ) - ), - nullptr, // 核函数,这里不使用,为空 - abc // 待估计参数 - ); - } - - // 配置求解器 - ceres::Solver::Options options; // 这里有很多配置项可以填 - options.linear_solver_type = ceres::DENSE_QR; // 增量方程如何求解 - options.minimizer_progress_to_stdout = true; // 输出到cout - - ceres::Solver::Summary summary; // 优化信息 - chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); - ceres::Solve ( options, &problem, &summary ); // 开始优化 - chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); - chrono::duration time_used = chrono::duration_cast>( t2-t1 ); - cout<<"solve time cost = "< -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -using namespace std; - -// 曲线模型的顶点,模板参数:优化变量维度和数据类型 -class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d> -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - virtual void setToOriginImpl() // 重置 - { - _estimate << 0,0,0; - } - - virtual void oplusImpl( const double* update ) // 更新 - { - _estimate += Eigen::Vector3d(update); - } - // 存盘和读盘:留空 - virtual bool read( istream& in ) {} - virtual bool write( ostream& out ) const {} -}; - -// 误差模型 模板参数:观测值维度,类型,连接顶点类型 -class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex> -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - CurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {} - // 计算曲线模型误差 - void computeError() - { - const CurveFittingVertex* v = static_cast (_vertices[0]); - const Eigen::Vector3d abc = v->estimate(); - _error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) ) ; - } - virtual bool read( istream& in ) {} - virtual bool write( ostream& out ) const {} -public: - double _x; // x 值, y 值为 _measurement -}; - -int main( int argc, char** argv ) -{ - double a=1.0, b=2.0, c=1.0; // 真实参数值 - int N=100; // 数据点 - double w_sigma=1.0; // 噪声Sigma值 - cv::RNG rng; // OpenCV随机数产生器 - double abc[3] = {0,0,0}; // abc参数的估计值 - - vector x_data, y_data; // 数据 - - cout<<"generating data: "< > Block; // 每个误差项优化变量维度为3,误差值维度为1 - Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense(); // 线性方程求解器 - Block* solver_ptr = new Block( linearSolver ); // 矩阵块求解器 - // 梯度下降方法,从GN, LM, DogLeg 中选 - g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr ); - // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); - // g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr ); - g2o::SparseOptimizer optimizer; // 图模型 - optimizer.setAlgorithm( solver ); // 设置求解器 - optimizer.setVerbose( true ); // 打开调试输出 - - // 往图中增加顶点 - CurveFittingVertex* v = new CurveFittingVertex(); - v->setEstimate( Eigen::Vector3d(0,0,0) ); - v->setId(0); - optimizer.addVertex( v ); - - // 往图中增加边 - for ( int i=0; isetId(i); - edge->setVertex( 0, v ); // 设置连接的顶点 - edge->setMeasurement( y_data[i] ); // 观测数值 - edge->setInformation( Eigen::Matrix::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆 - optimizer.addEdge( edge ); - } - - // 执行优化 - cout<<"start optimization"< time_used = chrono::duration_cast>( t2-t1 ); - cout<<"solve time cost = "<estimate(); - cout<<"estimated model: "< -using namespace std; - -void decomposeEssentialMat( InputArray _E, OutputArray _R1, OutputArray _R2, OutputArray _t ) -{ - Mat E = _E.getMat().reshape(1, 3); - CV_Assert(E.cols == 3 && E.rows == 3); - - Mat D, U, Vt; - SVD::compute(E, D, U, Vt); - - if (determinant(U) < 0) U *= -1.; - if (determinant(Vt) < 0) Vt *= -1.; - - Mat W = (Mat_(3, 3) << 0, 1, 0, -1, 0, 0, 0, 0, 1); - W.convertTo(W, E.type()); - - Mat R1, R2, t; - R1 = U * W * Vt; - R2 = U * W.t() * Vt; - t = U.col(2) * 1.0; - - R1.copyTo(_R1); - R2.copyTo(_R2); - t.copyTo(_t); -} - -int recoverPose( InputArray E, InputArray _points1, InputArray _points2, OutputArray _R, - OutputArray _t, double focal, Point2d pp, InputOutputArray _mask) -{ - Mat points1, points2, cameraMatrix; - cameraMatrix = (Mat_(3,3) << focal, 0, pp.x, 0, focal, pp.y, 0, 0, 1); - _points1.getMat().convertTo(points1, CV_64F); - _points2.getMat().convertTo(points2, CV_64F); - - int npoints = points1.checkVector(2); - CV_Assert( npoints >= 0 && points2.checkVector(2) == npoints && - points1.type() == points2.type()); - - CV_Assert(cameraMatrix.rows == 3 && cameraMatrix.cols == 3 && cameraMatrix.channels() == 1); - - if (points1.channels() > 1) - { - points1 = points1.reshape(1, npoints); - points2 = points2.reshape(1, npoints); - } - - double fx = cameraMatrix.at(0,0); - double fy = cameraMatrix.at(1,1); - double cx = cameraMatrix.at(0,2); - double cy = cameraMatrix.at(1,2); - - points1.col(0) = (points1.col(0) - cx) / fx; - points2.col(0) = (points2.col(0) - cx) / fx; - points1.col(1) = (points1.col(1) - cy) / fy; - points2.col(1) = (points2.col(1) - cy) / fy; - - points1 = points1.t(); - points2 = points2.t(); - - Mat R1, R2, t; - decomposeEssentialMat(E, R1, R2, t); - Mat P0 = Mat::eye(3, 4, R1.type()); - Mat P1(3, 4, R1.type()), P2(3, 4, R1.type()), P3(3, 4, R1.type()), P4(3, 4, R1.type()); - P1(Range::all(), Range(0, 3)) = R1 * 1.0; P1.col(3) = t * 1.0; - P2(Range::all(), Range(0, 3)) = R2 * 1.0; P2.col(3) = t * 1.0; - P3(Range::all(), Range(0, 3)) = R1 * 1.0; P3.col(3) = -t * 1.0; - P4(Range::all(), Range(0, 3)) = R2 * 1.0; P4.col(3) = -t * 1.0; - - // Do the cheirality check. - // Notice here a threshold dist is used to filter - // out far away points (i.e. infinite points) since - // there depth may vary between postive and negtive. - double dist = 50.0; - Mat Q; - triangulatePoints(P0, P1, points1, points2, Q); - Mat mask1 = Q.row(2).mul(Q.row(3)) > 0; - Q.row(0) /= Q.row(3); - Q.row(1) /= Q.row(3); - Q.row(2) /= Q.row(3); - Q.row(3) /= Q.row(3); - mask1 = (Q.row(2) < dist) & mask1; - Q = P1 * Q; - mask1 = (Q.row(2) > 0) & mask1; - mask1 = (Q.row(2) < dist) & mask1; - - triangulatePoints(P0, P2, points1, points2, Q); - Mat mask2 = Q.row(2).mul(Q.row(3)) > 0; - Q.row(0) /= Q.row(3); - Q.row(1) /= Q.row(3); - Q.row(2) /= Q.row(3); - Q.row(3) /= Q.row(3); - mask2 = (Q.row(2) < dist) & mask2; - Q = P2 * Q; - mask2 = (Q.row(2) > 0) & mask2; - mask2 = (Q.row(2) < dist) & mask2; - - triangulatePoints(P0, P3, points1, points2, Q); - Mat mask3 = Q.row(2).mul(Q.row(3)) > 0; - Q.row(0) /= Q.row(3); - Q.row(1) /= Q.row(3); - Q.row(2) /= Q.row(3); - Q.row(3) /= Q.row(3); - mask3 = (Q.row(2) < dist) & mask3; - Q = P3 * Q; - mask3 = (Q.row(2) > 0) & mask3; - mask3 = (Q.row(2) < dist) & mask3; - - triangulatePoints(P0, P4, points1, points2, Q); - Mat mask4 = Q.row(2).mul(Q.row(3)) > 0; - Q.row(0) /= Q.row(3); - Q.row(1) /= Q.row(3); - Q.row(2) /= Q.row(3); - Q.row(3) /= Q.row(3); - mask4 = (Q.row(2) < dist) & mask4; - Q = P4 * Q; - mask4 = (Q.row(2) > 0) & mask4; - mask4 = (Q.row(2) < dist) & mask4; - - mask1 = mask1.t(); - mask2 = mask2.t(); - mask3 = mask3.t(); - mask4 = mask4.t(); - - // If _mask is given, then use it to filter outliers. - if (!_mask.empty()) - { - Mat mask = _mask.getMat(); - CV_Assert(mask.size() == mask1.size()); - bitwise_and(mask, mask1, mask1); - bitwise_and(mask, mask2, mask2); - bitwise_and(mask, mask3, mask3); - bitwise_and(mask, mask4, mask4); - } - if (_mask.empty() && _mask.needed()) - { - _mask.create(mask1.size(), CV_8U); - } - - CV_Assert(_R.needed() && _t.needed()); - _R.create(3, 3, R1.type()); - _t.create(3, 1, t.type()); - - int good1 = countNonZero(mask1); - int good2 = countNonZero(mask2); - int good3 = countNonZero(mask3); - int good4 = countNonZero(mask4); - - if (good1 >= good2 && good1 >= good3 && good1 >= good4) - { - R1.copyTo(_R); - t.copyTo(_t); - if (_mask.needed()) mask1.copyTo(_mask); - return good1; - } - else if (good2 >= good1 && good2 >= good3 && good2 >= good4) - { - R2.copyTo(_R); - t.copyTo(_t); - if (_mask.needed()) mask2.copyTo(_mask); - return good2; - } - else if (good3 >= good1 && good3 >= good2 && good3 >= good4) - { - t = -t; - R1.copyTo(_R); - t.copyTo(_t); - if (_mask.needed()) mask3.copyTo(_mask); - return good3; - } - else - { - t = -t; - R2.copyTo(_R); - t.copyTo(_t); - if (_mask.needed()) mask4.copyTo(_mask); - return good4; - } -} - -cv::Mat findEssentialMat( InputArray _points1, InputArray _points2, double focal, Point2d pp) -{ - Mat cameraMatrix = (Mat_(3,3) << focal, 0, pp.x, 0, focal, pp.y, 0, 0, 1); - - Mat points1, points2; - _points1.getMat().convertTo(points1, CV_64F); - _points2.getMat().convertTo(points2, CV_64F); - - Mat fundamental_matrix; - fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT ); - Mat E; - E = cameraMatrix.t()* fundamental_matrix * cameraMatrix; - - return E; -} - - diff --git a/ch7/extra.h b/ch7/extra.h deleted file mode 100644 index 056df97cd..000000000 --- a/ch7/extra.h +++ /dev/null @@ -1,18 +0,0 @@ -#ifndef _EXTRA_H_ -#define _EXTRA_H_ -#include -#include -#include -#include - - -using namespace cv; - -void decomposeEssentialMat( InputArray _E, OutputArray _R1, OutputArray _R2, OutputArray _t ); - -int recoverPose( InputArray E, InputArray _points1, InputArray _points2, OutputArray _R, - OutputArray _t, double focal, Point2d pp=Point2d(0, 0), InputOutputArray _mask=noArray()); - -cv::Mat findEssentialMat( InputArray _points1, InputArray _points2, double focal, Point2d pp); - -#endif \ No newline at end of file diff --git a/ch7/feature_extraction.cpp b/ch7/feature_extraction.cpp deleted file mode 100644 index 431e07d73..000000000 --- a/ch7/feature_extraction.cpp +++ /dev/null @@ -1,84 +0,0 @@ -#include -#include -#include -#include - -using namespace std; -using namespace cv; - -int main ( int argc, char** argv ) -{ - if ( argc != 3 ) - { - cout<<"usage: feature_extraction img1 img2"< keypoints_1, keypoints_2; - Mat descriptors_1, descriptors_2; - Ptr detector = ORB::create(); - Ptr descriptor = ORB::create(); - // Ptr detector = FeatureDetector::create(detector_name); - // Ptr descriptor = DescriptorExtractor::create(descriptor_name); - Ptr matcher = DescriptorMatcher::create ( "BruteForce-Hamming" ); - - //-- 第一步:检测 Oriented FAST 角点位置 - detector->detect ( img_1,keypoints_1 ); - detector->detect ( img_2,keypoints_2 ); - - //-- 第二步:根据角点位置计算 BRIEF 描述子 - descriptor->compute ( img_1, keypoints_1, descriptors_1 ); - descriptor->compute ( img_2, keypoints_2, descriptors_2 ); - - Mat outimg1; - drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); - imshow("ORB特征点",outimg1); - - //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 - vector matches; - //BFMatcher matcher ( NORM_HAMMING ); - matcher->match ( descriptors_1, descriptors_2, matches ); - - //-- 第四步:匹配点对筛选 - double min_dist=10000, max_dist=0; - - //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - double dist = matches[i].distance; - if ( dist < min_dist ) min_dist = dist; - if ( dist > max_dist ) max_dist = dist; - } - - // 仅供娱乐的写法 - min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distancedistance; - max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distancedistance; - - printf ( "-- Max dist : %f \n", max_dist ); - printf ( "-- Min dist : %f \n", min_dist ); - - //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. - std::vector< DMatch > good_matches; - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) ) - { - good_matches.push_back ( matches[i] ); - } - } - - //-- 第五步:绘制匹配结果 - Mat img_match; - Mat img_goodmatch; - drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match ); - drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch ); - imshow ( "所有匹配点对", img_match ); - imshow ( "优化后匹配点对", img_goodmatch ); - waitKey(0); - - return 0; -} diff --git a/ch7/pose_estimation_2d2d.cpp b/ch7/pose_estimation_2d2d.cpp deleted file mode 100644 index 793864b48..000000000 --- a/ch7/pose_estimation_2d2d.cpp +++ /dev/null @@ -1,173 +0,0 @@ -#include -#include -#include -#include -#include -// #include "extra.h" // use this if in OpenCV2 -using namespace std; -using namespace cv; - -/**************************************************** - * 本程序演示了如何使用2D-2D的特征匹配估计相机运动 - * **************************************************/ - -void find_feature_matches ( - const Mat& img_1, const Mat& img_2, - std::vector& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ); - -void pose_estimation_2d2d ( - std::vector keypoints_1, - std::vector keypoints_2, - std::vector< DMatch > matches, - Mat& R, Mat& t ); - -// 像素坐标转相机归一化坐标 -Point2d pixel2cam ( const Point2d& p, const Mat& K ); - -int main ( int argc, char** argv ) -{ - if ( argc != 3 ) - { - cout<<"usage: pose_estimation_2d2d img1 img2"< keypoints_1, keypoints_2; - vector matches; - find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); - cout<<"一共找到了"< ( 3,3 ) << - 0, -t.at ( 2,0 ), t.at ( 1,0 ), - t.at ( 2,0 ), 0, -t.at ( 0,0 ), - -t.at ( 1,0 ), t.at ( 0,0 ), 0 ); - - cout<<"t^R="< ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - for ( DMatch m: matches ) - { - Point2d pt1 = pixel2cam ( keypoints_1[ m.queryIdx ].pt, K ); - Mat y1 = ( Mat_ ( 3,1 ) << pt1.x, pt1.y, 1 ); - Point2d pt2 = pixel2cam ( keypoints_2[ m.trainIdx ].pt, K ); - Mat y2 = ( Mat_ ( 3,1 ) << pt2.x, pt2.y, 1 ); - Mat d = y2.t() * t_x * R * y1; - cout << "epipolar constraint = " << d << endl; - } - return 0; -} - -void find_feature_matches ( const Mat& img_1, const Mat& img_2, - std::vector& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ) -{ - //-- 初始化 - Mat descriptors_1, descriptors_2; - // used in OpenCV3 - Ptr detector = ORB::create(); - Ptr descriptor = ORB::create(); - // use this if you are in OpenCV2 - // Ptr detector = FeatureDetector::create ( "ORB" ); - // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); - Ptr matcher = DescriptorMatcher::create ( "BruteForce-Hamming" ); - //-- 第一步:检测 Oriented FAST 角点位置 - detector->detect ( img_1,keypoints_1 ); - detector->detect ( img_2,keypoints_2 ); - - //-- 第二步:根据角点位置计算 BRIEF 描述子 - descriptor->compute ( img_1, keypoints_1, descriptors_1 ); - descriptor->compute ( img_2, keypoints_2, descriptors_2 ); - - //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 - vector match; - //BFMatcher matcher ( NORM_HAMMING ); - matcher->match ( descriptors_1, descriptors_2, match ); - - //-- 第四步:匹配点对筛选 - double min_dist=10000, max_dist=0; - - //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - double dist = match[i].distance; - if ( dist < min_dist ) min_dist = dist; - if ( dist > max_dist ) max_dist = dist; - } - - printf ( "-- Max dist : %f \n", max_dist ); - printf ( "-- Min dist : %f \n", min_dist ); - - //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) - { - matches.push_back ( match[i] ); - } - } -} - - -Point2d pixel2cam ( const Point2d& p, const Mat& K ) -{ - return Point2d - ( - ( p.x - K.at ( 0,2 ) ) / K.at ( 0,0 ), - ( p.y - K.at ( 1,2 ) ) / K.at ( 1,1 ) - ); -} - - -void pose_estimation_2d2d ( std::vector keypoints_1, - std::vector keypoints_2, - std::vector< DMatch > matches, - Mat& R, Mat& t ) -{ - // 相机内参,TUM Freiburg2 - Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - - //-- 把匹配点转换为vector的形式 - vector points1; - vector points2; - - for ( int i = 0; i < ( int ) matches.size(); i++ ) - { - points1.push_back ( keypoints_1[matches[i].queryIdx].pt ); - points2.push_back ( keypoints_2[matches[i].trainIdx].pt ); - } - - //-- 计算基础矩阵 - Mat fundamental_matrix; - fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT ); - cout<<"fundamental_matrix is "< -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -using namespace std; -using namespace cv; - -void find_feature_matches ( - const Mat& img_1, const Mat& img_2, - std::vector& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ); - -// 像素坐标转相机归一化坐标 -Point2d pixel2cam ( const Point2d& p, const Mat& K ); - -void bundleAdjustment ( - const vector points_3d, - const vector points_2d, - const Mat& K, - Mat& R, Mat& t -); - -int main ( int argc, char** argv ) -{ - if ( argc != 5 ) - { - cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"< keypoints_1, keypoints_2; - vector matches; - find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); - cout<<"一共找到了"< ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - vector pts_3d; - vector pts_2d; - for ( DMatch m:matches ) - { - ushort d = d1.ptr (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ]; - if ( d == 0 ) // bad depth - continue; - float dd = d/5000.0; - Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K ); - pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) ); - pts_2d.push_back ( keypoints_2[m.trainIdx].pt ); - } - - cout<<"3d-2d pairs: "<& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ) -{ - //-- 初始化 - Mat descriptors_1, descriptors_2; - // used in OpenCV3 - Ptr detector = ORB::create(); - Ptr descriptor = ORB::create(); - // use this if you are in OpenCV2 - // Ptr detector = FeatureDetector::create ( "ORB" ); - // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); - Ptr matcher = DescriptorMatcher::create ( "BruteForce-Hamming" ); - //-- 第一步:检测 Oriented FAST 角点位置 - detector->detect ( img_1,keypoints_1 ); - detector->detect ( img_2,keypoints_2 ); - - //-- 第二步:根据角点位置计算 BRIEF 描述子 - descriptor->compute ( img_1, keypoints_1, descriptors_1 ); - descriptor->compute ( img_2, keypoints_2, descriptors_2 ); - - //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 - vector match; - // BFMatcher matcher ( NORM_HAMMING ); - matcher->match ( descriptors_1, descriptors_2, match ); - - //-- 第四步:匹配点对筛选 - double min_dist=10000, max_dist=0; - - //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - double dist = match[i].distance; - if ( dist < min_dist ) min_dist = dist; - if ( dist > max_dist ) max_dist = dist; - } - - printf ( "-- Max dist : %f \n", max_dist ); - printf ( "-- Min dist : %f \n", min_dist ); - - //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) - { - matches.push_back ( match[i] ); - } - } -} - -Point2d pixel2cam ( const Point2d& p, const Mat& K ) -{ - return Point2d - ( - ( p.x - K.at ( 0,2 ) ) / K.at ( 0,0 ), - ( p.y - K.at ( 1,2 ) ) / K.at ( 1,1 ) - ); -} - -void bundleAdjustment ( - const vector< Point3f > points_3d, - const vector< Point2f > points_2d, - const Mat& K, - Mat& R, Mat& t ) -{ - // 初始化g2o - typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3 - Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse(); // 线性方程求解器 - Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器 - g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); - g2o::SparseOptimizer optimizer; - optimizer.setAlgorithm ( solver ); - - // vertex - g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose - Eigen::Matrix3d R_mat; - R_mat << - R.at ( 0,0 ), R.at ( 0,1 ), R.at ( 0,2 ), - R.at ( 1,0 ), R.at ( 1,1 ), R.at ( 1,2 ), - R.at ( 2,0 ), R.at ( 2,1 ), R.at ( 2,2 ); - pose->setId ( 0 ); - pose->setEstimate ( g2o::SE3Quat ( - R_mat, - Eigen::Vector3d ( t.at ( 0,0 ), t.at ( 1,0 ), t.at ( 2,0 ) ) - ) ); - optimizer.addVertex ( pose ); - - int index = 1; - for ( const Point3f p:points_3d ) // landmarks - { - g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ(); - point->setId ( index++ ); - point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) ); - point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容 - optimizer.addVertex ( point ); - } - - // parameter: camera intrinsics - g2o::CameraParameters* camera = new g2o::CameraParameters ( - K.at ( 0,0 ), Eigen::Vector2d ( K.at ( 0,2 ), K.at ( 1,2 ) ), 0 - ); - camera->setId ( 0 ); - optimizer.addParameter ( camera ); - - // edges - index = 1; - for ( const Point2f p:points_2d ) - { - g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV(); - edge->setId ( index ); - edge->setVertex ( 0, dynamic_cast ( optimizer.vertex ( index ) ) ); - edge->setVertex ( 1, pose ); - edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); - edge->setParameterId ( 0,0 ); - edge->setInformation ( Eigen::Matrix2d::Identity() ); - optimizer.addEdge ( edge ); - index++; - } - - chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); - optimizer.setVerbose ( true ); - optimizer.initializeOptimization(); - optimizer.optimize ( 100 ); - chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); - chrono::duration time_used = chrono::duration_cast> ( t2-t1 ); - cout<<"optimization costs time: "< keypoints_1, keypoints_2; - vector matches; - find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); - cout<<"一共找到了"< ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - vector pts1, pts2; - - for ( DMatch m:matches ) - { - ushort d1 = depth1.ptr ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ]; - ushort d2 = depth2.ptr ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ]; - if ( d1==0 || d2==0 ) // bad depth - continue; - Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K ); - Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K ); - float dd1 = float ( d1 ) /5000.0; - float dd2 = float ( d2 ) /5000.0; - pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) ); - pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) ); - } - - cout<<"3d-3d pairs: "< descriptor = DescriptorExtractor::create ( "ORB" ); - Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); - //-- 第一步:检测 Oriented FAST 角点位置 - detector->detect ( img_1,keypoints_1 ); - detector->detect ( img_2,keypoints_2 ); - - //-- 第二步:根据角点位置计算 BRIEF 描述子 - descriptor->compute ( img_1, keypoints_1, descriptors_1 ); - descriptor->compute ( img_2, keypoints_2, descriptors_2 ); - - //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 - vector match; - // BFMatcher matcher ( NORM_HAMMING ); - matcher->match ( descriptors_1, descriptors_2, match ); - - //-- 第四步:匹配点对筛选 - double min_dist=10000, max_dist=0; - - //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - double dist = match[i].distance; - if ( dist < min_dist ) min_dist = dist; - if ( dist > max_dist ) max_dist = dist; - } - - printf ( "-- Max dist : %f \n", max_dist ); - printf ( "-- Min dist : %f \n", min_dist ); - - //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) - { - matches.push_back ( match[i] ); - } - } -} - -Point2d pixel2cam ( const Point2d& p, const Mat& K ) -{ - return Point2d - ( - ( p.x - K.at ( 0,2 ) ) / K.at ( 0,0 ), - ( p.y - K.at ( 1,2 ) ) / K.at ( 1,1 ) - ); -} - -void pose_estimation_3d3d ( - const vector& pts1, - const vector& pts2, - Mat& R, Mat& t -) -{ - Point3f p1, p2; // center of mass - int N = pts1.size(); - for ( int i=0; i q1 ( N ), q2 ( N ); // remove the center - for ( int i=0; i& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ); - -void pose_estimation_2d2d ( - const std::vector& keypoints_1, - const std::vector& keypoints_2, - const std::vector< DMatch >& matches, - Mat& R, Mat& t ); - -void triangulation ( - const vector& keypoint_1, - const vector& keypoint_2, - const std::vector< DMatch >& matches, - const Mat& R, const Mat& t, - vector& points -); - -// 像素坐标转相机归一化坐标 -Point2f pixel2cam( const Point2d& p, const Mat& K ); - -int main ( int argc, char** argv ) -{ - if ( argc != 3 ) - { - cout<<"usage: triangulation img1 img2"< keypoints_1, keypoints_2; - vector matches; - find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); - cout<<"一共找到了"< points; - triangulation( keypoints_1, keypoints_2, matches, R, t, points ); - - //-- 验证三角化点与特征点的重投影关系 - Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - for ( int i=0; i& keypoints_1, - std::vector& keypoints_2, - std::vector< DMatch >& matches ) -{ - //-- 初始化 - Mat descriptors_1, descriptors_2; - // used in OpenCV3 - Ptr detector = ORB::create(); - Ptr descriptor = ORB::create(); - // use this if you are in OpenCV2 - // Ptr detector = FeatureDetector::create ( "ORB" ); - // Ptr descriptor = DescriptorExtractor::create ( "ORB" ); - Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming"); - //-- 第一步:检测 Oriented FAST 角点位置 - detector->detect ( img_1,keypoints_1 ); - detector->detect ( img_2,keypoints_2 ); - - //-- 第二步:根据角点位置计算 BRIEF 描述子 - descriptor->compute ( img_1, keypoints_1, descriptors_1 ); - descriptor->compute ( img_2, keypoints_2, descriptors_2 ); - - //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 - vector match; - // BFMatcher matcher ( NORM_HAMMING ); - matcher->match ( descriptors_1, descriptors_2, match ); - - //-- 第四步:匹配点对筛选 - double min_dist=10000, max_dist=0; - - //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - double dist = match[i].distance; - if ( dist < min_dist ) min_dist = dist; - if ( dist > max_dist ) max_dist = dist; - } - - printf ( "-- Max dist : %f \n", max_dist ); - printf ( "-- Min dist : %f \n", min_dist ); - - //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. - for ( int i = 0; i < descriptors_1.rows; i++ ) - { - if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) - { - matches.push_back ( match[i] ); - } - } -} - -void pose_estimation_2d2d ( - const std::vector& keypoints_1, - const std::vector& keypoints_2, - const std::vector< DMatch >& matches, - Mat& R, Mat& t ) -{ - // 相机内参,TUM Freiburg2 - Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - - //-- 把匹配点转换为vector的形式 - vector points1; - vector points2; - - for ( int i = 0; i < ( int ) matches.size(); i++ ) - { - points1.push_back ( keypoints_1[matches[i].queryIdx].pt ); - points2.push_back ( keypoints_2[matches[i].trainIdx].pt ); - } - - //-- 计算基础矩阵 - Mat fundamental_matrix; - fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT ); - cout<<"fundamental_matrix is "<& keypoint_1, - const vector< KeyPoint >& keypoint_2, - const std::vector< DMatch >& matches, - const Mat& R, const Mat& t, - vector< Point3d >& points ) -{ - Mat T1 = (Mat_ (3,4) << - 1,0,0,0, - 0,1,0,0, - 0,0,1,0); - Mat T2 = (Mat_ (3,4) << - R.at(0,0), R.at(0,1), R.at(0,2), t.at(0,0), - R.at(1,0), R.at(1,1), R.at(1,2), t.at(1,0), - R.at(2,0), R.at(2,1), R.at(2,2), t.at(2,0) - ); - - Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); - vector pts_1, pts_2; - for ( DMatch m:matches ) - { - // 将像素坐标转换至相机坐标 - pts_1.push_back ( pixel2cam( keypoint_1[m.queryIdx].pt, K) ); - pts_2.push_back ( pixel2cam( keypoint_2[m.trainIdx].pt, K) ); - } - - Mat pts_4d; - cv::triangulatePoints( T1, T2, pts_1, pts_2, pts_4d ); - - // 转换成非齐次坐标 - for ( int i=0; i(3,0); // 归一化 - Point3d p ( - x.at(0,0), - x.at(1,0), - x.at(2,0) - ); - points.push_back( p ); - } -} - -Point2f pixel2cam ( const Point2d& p, const Mat& K ) -{ - return Point2f - ( - ( p.x - K.at(0,2) ) / K.at(0,0), - ( p.y - K.at(1,2) ) / K.at(1,1) - ); -} - diff --git a/ch8/LKFlow/useLK.cpp b/ch8/LKFlow/useLK.cpp deleted file mode 100644 index 5dbfeae10..000000000 --- a/ch8/LKFlow/useLK.cpp +++ /dev/null @@ -1,91 +0,0 @@ -#include -#include -#include -#include -#include -using namespace std; - -#include -#include -#include -#include - -int main( int argc, char** argv ) -{ - if ( argc != 2 ) - { - cout<<"usage: useLK path_to_dataset"< keypoints; // 因为要删除跟踪失败的点,使用list - cv::Mat color, depth, last_color; - - for ( int index=0; index<100; index++ ) - { - fin>>time_rgb>>rgb_file>>time_depth>>depth_file; - color = cv::imread( path_to_dataset+"/"+rgb_file ); - depth = cv::imread( path_to_dataset+"/"+depth_file, -1 ); - if (index ==0 ) - { - // 对第一帧提取FAST特征点 - vector kps; - cv::Ptr detector = cv::FastFeatureDetector::create(); - detector->detect( color, kps ); - for ( auto kp:kps ) - keypoints.push_back( kp.pt ); - last_color = color; - continue; - } - if ( color.data==nullptr || depth.data==nullptr ) - continue; - // 对其他帧用LK跟踪特征点 - vector next_keypoints; - vector prev_keypoints; - for ( auto kp:keypoints ) - prev_keypoints.push_back(kp); - vector status; - vector error; - chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); - cv::calcOpticalFlowPyrLK( last_color, color, prev_keypoints, next_keypoints, status, error ); - chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); - chrono::duration time_used = chrono::duration_cast>( t2-t1 ); - cout<<"LK Flow use time:"< -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -using namespace std; -using namespace g2o; - -/******************************************** - * 本节演示了RGBD上的半稠密直接法 - ********************************************/ - -// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值 -struct Measurement -{ - Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {} - Eigen::Vector3d pos_world; - float grayscale; -}; - -inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale ) -{ - float zz = float ( d ) /scale; - float xx = zz* ( x-cx ) /fx; - float yy = zz* ( y-cy ) /fy; - return Eigen::Vector3d ( xx, yy, zz ); -} - -inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy ) -{ - float u = fx*x/z+cx; - float v = fy*y/z+cy; - return Eigen::Vector2d ( u,v ); -} - -// 直接法估计位姿 -// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿 -// 返回:true为成功,false失败 -bool poseEstimationDirect ( const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw ); - - -// project a 3d point into an image plane, the error is photometric error -// an unary edge with one vertex SE3Expmap (the pose of camera) -class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap> -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - - EdgeSE3ProjectDirect() {} - - EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image ) - : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image ) - {} - - virtual void computeError() - { - const VertexSE3Expmap* v =static_cast ( _vertices[0] ); - Eigen::Vector3d x_local = v->estimate().map ( x_world_ ); - float x = x_local[0]*fx_/x_local[2] + cx_; - float y = x_local[1]*fy_/x_local[2] + cy_; - // check x,y is in the image - if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows ) - { - _error ( 0,0 ) = 0.0; - this->setLevel ( 1 ); - } - else - { - _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement; - } - } - - // plus in manifold - virtual void linearizeOplus( ) - { - if ( level() == 1 ) - { - _jacobianOplusXi = Eigen::Matrix::Zero(); - return; - } - VertexSE3Expmap* vtx = static_cast ( _vertices[0] ); - Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ ); // q in book - - double x = xyz_trans[0]; - double y = xyz_trans[1]; - double invz = 1.0/xyz_trans[2]; - double invz_2 = invz*invz; - - float u = x*fx_*invz + cx_; - float v = y*fy_*invz + cy_; - - // jacobian from se3 to u,v - // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation - Eigen::Matrix jacobian_uv_ksai; - - jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_; - jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_; - jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_; - jacobian_uv_ksai ( 0,3 ) = invz *fx_; - jacobian_uv_ksai ( 0,4 ) = 0; - jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_; - - jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_; - jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_; - jacobian_uv_ksai ( 1,2 ) = x*invz *fy_; - jacobian_uv_ksai ( 1,3 ) = 0; - jacobian_uv_ksai ( 1,4 ) = invz *fy_; - jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_; - - Eigen::Matrix jacobian_pixel_uv; - - jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2; - jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2; - - _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai; - } - - // dummy read and write functions because we don't care... - virtual bool read ( std::istream& in ) {} - virtual bool write ( std::ostream& out ) const {} - -protected: - // get a gray scale value from reference image (bilinear interpolated) - inline float getPixelValue ( float x, float y ) - { - uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ]; - float xx = x - floor ( x ); - float yy = y - floor ( y ); - return float ( - ( 1-xx ) * ( 1-yy ) * data[0] + - xx* ( 1-yy ) * data[1] + - ( 1-xx ) *yy*data[ image_->step ] + - xx*yy*data[image_->step+1] - ); - } -public: - Eigen::Vector3d x_world_; // 3D point in world frame - float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics - cv::Mat* image_=nullptr; // reference image -}; - -int main ( int argc, char** argv ) -{ - if ( argc != 2 ) - { - cout<<"usage: useLK path_to_dataset"< measurements; - // 相机内参 - float cx = 325.5; - float cy = 253.5; - float fx = 518.0; - float fy = 519.0; - float depth_scale = 1000.0; - Eigen::Matrix3f K; - K<>time_rgb>>rgb_file>>time_depth>>depth_file; - color = cv::imread ( path_to_dataset+"/"+rgb_file ); - depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 ); - if ( color.data==nullptr || depth.data==nullptr ) - continue; - cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY ); - if ( index ==0 ) - { - // select the pixels with high gradiants - for ( int x=10; x(y)[x+1] - gray.ptr(y)[x-1], - gray.ptr(y+1)[x] - gray.ptr(y-1)[x] - ); - if ( delta.norm() < 50 ) - continue; - ushort d = depth.ptr (y)[x]; - if ( d==0 ) - continue; - Eigen::Vector3d p3d = project2Dto3D ( x, y, d, fx, fy, cx, cy, depth_scale ); - float grayscale = float ( gray.ptr (y) [x] ); - measurements.push_back ( Measurement ( p3d, grayscale ) ); - } - prev_color = color.clone(); - cout<<"add total "< time_used = chrono::duration_cast> ( t2-t1 ); - cout<<"direct method costs time: "<& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw ) -{ - // 初始化g2o - typedef g2o::BlockSolver> DirectBlock; // 求解的向量是6*1的 - DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > (); - DirectBlock* solver_ptr = new DirectBlock ( linearSolver ); - // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N - g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M - g2o::SparseOptimizer optimizer; - optimizer.setAlgorithm ( solver ); - optimizer.setVerbose( true ); - - g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); - pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) ); - pose->setId ( 0 ); - optimizer.addVertex ( pose ); - - // 添加边 - int id=1; - for ( Measurement m: measurements ) - { - EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect ( - m.pos_world, - K ( 0,0 ), K ( 1,1 ), K ( 0,2 ), K ( 1,2 ), gray - ); - edge->setVertex ( 0, pose ); - edge->setMeasurement ( m.grayscale ); - edge->setInformation ( Eigen::Matrix::Identity() ); - edge->setId ( id++ ); - optimizer.addEdge ( edge ); - } - cout<<"edges in graph: "<estimate(); -} - diff --git a/ch8/directMethod/direct_sparse.cpp b/ch8/directMethod/direct_sparse.cpp deleted file mode 100644 index 833876d97..000000000 --- a/ch8/directMethod/direct_sparse.cpp +++ /dev/null @@ -1,289 +0,0 @@ -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -using namespace std; -using namespace g2o; - -/******************************************** - * 本节演示了RGBD上的稀疏直接法 - ********************************************/ - -// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值 -struct Measurement -{ - Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {} - Eigen::Vector3d pos_world; - float grayscale; -}; - -inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale ) -{ - float zz = float ( d ) /scale; - float xx = zz* ( x-cx ) /fx; - float yy = zz* ( y-cy ) /fy; - return Eigen::Vector3d ( xx, yy, zz ); -} - -inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy ) -{ - float u = fx*x/z+cx; - float v = fy*y/z+cy; - return Eigen::Vector2d ( u,v ); -} - -// 直接法估计位姿 -// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿 -// 返回:true为成功,false失败 -bool poseEstimationDirect ( const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw ); - - -// project a 3d point into an image plane, the error is photometric error -// an unary edge with one vertex SE3Expmap (the pose of camera) -class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap> -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - - EdgeSE3ProjectDirect() {} - - EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image ) - : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image ) - {} - - virtual void computeError() - { - const VertexSE3Expmap* v =static_cast ( _vertices[0] ); - Eigen::Vector3d x_local = v->estimate().map ( x_world_ ); - float x = x_local[0]*fx_/x_local[2] + cx_; - float y = x_local[1]*fy_/x_local[2] + cy_; - // check x,y is in the image - if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows ) - { - _error ( 0,0 ) = 0.0; - this->setLevel ( 1 ); - } - else - { - _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement; - } - } - - // plus in manifold - virtual void linearizeOplus( ) - { - if ( level() == 1 ) - { - _jacobianOplusXi = Eigen::Matrix::Zero(); - return; - } - VertexSE3Expmap* vtx = static_cast ( _vertices[0] ); - Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ ); // q in book - - double x = xyz_trans[0]; - double y = xyz_trans[1]; - double invz = 1.0/xyz_trans[2]; - double invz_2 = invz*invz; - - float u = x*fx_*invz + cx_; - float v = y*fy_*invz + cy_; - - // jacobian from se3 to u,v - // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation - Eigen::Matrix jacobian_uv_ksai; - - jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_; - jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_; - jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_; - jacobian_uv_ksai ( 0,3 ) = invz *fx_; - jacobian_uv_ksai ( 0,4 ) = 0; - jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_; - - jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_; - jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_; - jacobian_uv_ksai ( 1,2 ) = x*invz *fy_; - jacobian_uv_ksai ( 1,3 ) = 0; - jacobian_uv_ksai ( 1,4 ) = invz *fy_; - jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_; - - Eigen::Matrix jacobian_pixel_uv; - - jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2; - jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2; - - _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai; - } - - // dummy read and write functions because we don't care... - virtual bool read ( std::istream& in ) {} - virtual bool write ( std::ostream& out ) const {} - -protected: - // get a gray scale value from reference image (bilinear interpolated) - inline float getPixelValue ( float x, float y ) - { - uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ]; - float xx = x - floor ( x ); - float yy = y - floor ( y ); - return float ( - ( 1-xx ) * ( 1-yy ) * data[0] + - xx* ( 1-yy ) * data[1] + - ( 1-xx ) *yy*data[ image_->step ] + - xx*yy*data[image_->step+1] - ); - } -public: - Eigen::Vector3d x_world_; // 3D point in world frame - float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics - cv::Mat* image_=nullptr; // reference image -}; - -int main ( int argc, char** argv ) -{ - if ( argc != 2 ) - { - cout<<"usage: useLK path_to_dataset"< measurements; - // 相机内参 - float cx = 325.5; - float cy = 253.5; - float fx = 518.0; - float fy = 519.0; - float depth_scale = 1000.0; - Eigen::Matrix3f K; - K<>time_rgb>>rgb_file>>time_depth>>depth_file; - color = cv::imread ( path_to_dataset+"/"+rgb_file ); - depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 ); - if ( color.data==nullptr || depth.data==nullptr ) - continue; - cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY ); - if ( index ==0 ) - { - // 对第一帧提取FAST特征点 - vector keypoints; - cv::Ptr detector = cv::FastFeatureDetector::create(); - detector->detect ( color, keypoints ); - for ( auto kp:keypoints ) - { - // 去掉邻近边缘处的点 - if ( kp.pt.x < 20 || kp.pt.y < 20 || ( kp.pt.x+20 ) >color.cols || ( kp.pt.y+20 ) >color.rows ) - continue; - ushort d = depth.ptr ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ]; - if ( d==0 ) - continue; - Eigen::Vector3d p3d = project2Dto3D ( kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale ); - float grayscale = float ( gray.ptr ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] ); - measurements.push_back ( Measurement ( p3d, grayscale ) ); - } - prev_color = color.clone(); - continue; - } - // 使用直接法计算相机运动 - chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); - poseEstimationDirect ( measurements, &gray, K, Tcw ); - chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); - chrono::duration time_used = chrono::duration_cast> ( t2-t1 ); - cout<<"direct method costs time: "<& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw ) -{ - // 初始化g2o - typedef g2o::BlockSolver> DirectBlock; // 求解的向量是6*1的 - DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > (); - DirectBlock* solver_ptr = new DirectBlock ( linearSolver ); - // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N - g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M - g2o::SparseOptimizer optimizer; - optimizer.setAlgorithm ( solver ); - optimizer.setVerbose( true ); - - g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); - pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) ); - pose->setId ( 0 ); - optimizer.addVertex ( pose ); - - // 添加边 - int id=1; - for ( Measurement m: measurements ) - { - EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect ( - m.pos_world, - K ( 0,0 ), K ( 1,1 ), K ( 0,2 ), K ( 1,2 ), gray - ); - edge->setVertex ( 0, pose ); - edge->setMeasurement ( m.grayscale ); - edge->setInformation ( Eigen::Matrix::Identity() ); - edge->setId ( id++ ); - optimizer.addEdge ( edge ); - } - cout<<"edges in graph: "<estimate(); -} -