-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter04.scm
193 lines (148 loc) · 2.99 KB
/
chapter04.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
(define add1
(lambda (n)
(+ n 1)))
(add1 67)
(define sub1
(lambda (n)
(- n 1)))
(sub1 5)
(zero? 0)
(zero? 1492)
(+ 46 12)
(define add
(lambda (n m)
(cond
((zero? m) n)
(else (add (add1 n) (sub1 m))))))
(add 3 4)
(define sub
(lambda (n m)
(cond
((zero? m) n)
(else (sub (sub1 n) (sub1 m))))))
(sub 4 3)
(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else (add (car tup) (addtup (cdr tup)))))))
(addtup '(1 2 3 4))
(define mul
(lambda (x y)
(cond
((eq? y 0) 0)
(else (add x (mul x (sub1 y)))))))
(mul 3 5)
(define tup+
(lambda (t1 t2)
(cond
((null? t1) t2)
((null? t2) t1)
(else (cons (+ (car t1) (car t2)) (tup+ (cdr t1) (cdr t2)))))))
(tup+ '(1 2) '(3 4))
(tup+ '(1 2 3) '(3 4))
(define larger
(lambda (x y)
(cond
((zero? x) #f)
((zero? y) #t)
(else (larger (sub1 x) (sub1 y))))))
(larger 5 3)
(larger 3 5)
(define smaller
(lambda (x y)
(cond
((zero? y) #f)
((zero? x) #t)
(else (smaller (sub1 x) (sub1 y))))))
(smaller 3 3)
(smaller 3 5)
(smaller 5 3)
(define equal
(lambda (x y)
(cond
((smaller x y) #f)
((larger x y) #f)
(else #t))))
(equal 3 3)
(equal 5 3)
(equal 3 5)
(define expo
(lambda (x y)
(cond
((zero? y) 1)
(else (mul x (expo x (sub1 y)))))))
(expo 2 0)
(expo 2 1)
(expo 2 8)
(define div
(lambda (x y)
(cond
((smaller x y) 0)
(else (add1 (div (sub x y) y))))))
(div 9 3)
(div 9 2)
(div 15 4)
(define len
(lambda (l)
(cond
((null? l) 0)
(else (add1 (len (cdr l)))))))
(len '(1 2 3))
(len '())
(define pick
(lambda (n lat)
(cond
((zero? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))
(pick 1 '(1 2 3))
(pick 2 '(1 2 3))
(pick 3 '(1 2 3))
(define rempick
(lambda (n lat)
(cond
((zero? (sub1 n)) (cdr lat))
(else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))
(rempick 3 '(hotdogs with hot mustard))
(define no-nums
(lambda (l)
(cond
((null? l) '())
((number? (car l)) (no-nums (cdr l)))
(else (cons (car l) (no-nums (cdr l)))))))
(no-nums '(5 pears 6 prunes 9 dates))
(define all-nums
(lambda (l)
(cond
((null? l) '())
((number? (car l)) (cons (car l) (all-nums (cdr l))))
(else (all-nums (cdr l))))))
(all-nums '(5 pears 6 prunes 9 dates))
(define eqan?
(lambda (a b)
(cond
((and (number? a) (number? b)) (= a b))
((or (number? a) (number? b)) #f)
(else (eq? a b)))))
(eqan? 5 3)
(eqan? 5 5)
(eqan? 5 'a)
(eqan? 'a 5)
(eqan? 'a 'b)
(eqan? 'a 'a)
(define (occur x l)
(cond
((null? l) 0)
((eq? (car l) x) (add1 (occur x (cdr l))))
(else (occur x (cdr l)))))
(occur 'a '(a b a))
(occur 5 '(5 2 1))
(occur 5 '(a b c))
(define (one? x)
(zero? (sub1 x)))
(define rempick-
(lambda (n lat)
(cond
((one? n) (cdr lat))
(else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))
(rempick- 2 '(hotdogs with hot mustard))