How? Taipy GUI with Taipy Core pops out as a 360° platform to build production-ready web applications
Open a terminal and run:
$ pip install taipy
You're all set! All aboard the Taipy journey 🚂
from taipy import Gui
excitement_page = """
# Welcome to Taipy
## Getting started with Taipy GUI
### How excited are you to try Taipy?
<|{excitement}|slider|min=1|max=100|>
My excitement level: <|{excitement}|text|>
"""
excitement = 100
Gui(page=excitement_page).run()
RUN🏃🏽♀️
Let's create a back-end execution, also called scenario using Taipy Core. Our scenario will filter movie data based on the genre you choose. This scenario will be submitted (i.e., executed) each time the genre selection changes and output the seven most popular movies of that genre.
Here is our filter function: a standard Python function that is used by the unique task in the scenario
def filter_genre(initial_dataset: pd.DataFrame, selected_genre):
filtered_dataset = initial_dataset[initial_dataset['genres'].str.contains(selected_genre)]
filtered_data = filtered_dataset.nlargest(7, 'Popularity %')
return filtered_data
This is the execution graph of the scenario we are implementing
You can use the Taipy Studio extension in VSCode to configure your pipeline with no code
Your configuration is automatically saved as a TOML file
Now, let's load this configuration and add a user interface on top for a 🎉FULL APPLICATION🎉
import taipy as tp
import pandas as pd
from taipy import Config, Scope, Gui
# TAIPY Core
# Filtering function - task
def filter_genre(initial_dataset: pd.DataFrame, selected_genre):
filtered_dataset = initial_dataset[initial_dataset['genres'].str.contains(selected_genre)]
filtered_data = filtered_dataset.nlargest(7, 'Popularity %')
return filtered_data
# Load the configuration made with Taipy Studio
Config.load('config.toml')
scenario_cfg = Config.scenarios['scenario']
# Start Taipy Core service
tp.Core().run()
# Create a scenario
scenario = tp.create_scenario(scenario_cfg)
# TAIPY GUI
# Let's add Taipy GUI to our Taipy Core for a full application
# Callback definition - submits scenario with genre selection
def on_genre_selected(state):
scenario.selected_genre_node.write(state.selected_genre)
tp.submit(scenario)
state.df = scenario.filtered_data.read()
# Get list of genres
genres = [
'Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Fantasy', 'IMAX'
'Romance','Sci-FI', 'Western', 'Crime', 'Mystery', 'Drama', 'Horror', 'Thriller', 'Film-Noir','War', 'Musical', 'Documentary'
]
# Initialization of variables
df = pd.DataFrame(columns=['Title', 'Popularity %'])
selected_genre = None
# User interface definition
my_page = """
# Film recommendation
## Choose your favorite genre
<|{selected_genre}|selector|lov={genres}|on_change=on_genre_selected|dropdown|>
## Here are the top seven picks by popularity
<|{df}|chart|x=Title|y=Popularity %|type=bar|title=Film Popularity|>
"""
Gui(page=my_page).run()
RUN🏃🏽♀️
Want to help build Taipy? Check out our CONTRIBUTING.md
file.
Want to be part of the Taipy community? Check out our CODE_OF_CONDUCT.md
file.
Copyright 2023 Avaiga Private Limited
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.