-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmodels.py
78 lines (60 loc) · 2.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch import autograd
import torchvision.models as models
from networks import G_Net, D_Net
class AdversarialLoss(nn.Module):
"""
Adversarial loss
https://arxiv.org/abs/1711.10337
"""
def __init__(self, type='nsgan', target_real_label=1.0, target_fake_label=0.0):
"""
type = nsgan | lsgan | hinge
"""
super(AdversarialLoss, self).__init__()
self.type = type
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
if type == 'nsgan':
self.criterion = nn.BCELoss()
elif type == 'lsgan':
self.criterion = nn.MSELoss()
elif type == 'hinge':
self.criterion = nn.ReLU()
def __call__(self, outputs, is_real, is_disc=None):
if self.type == 'hinge':
if is_disc:
if is_real:
outputs = -outputs
return self.criterion(1 + outputs).mean()
else:
return (-outputs).mean()
else:
labels = (self.real_label if is_real else self.fake_label).expand_as(outputs)
loss = self.criterion(outputs, labels)
return loss
class InpaintingModel(nn.Module):
def __init__(self, g_lr, d_lr, l1_weight, gan_weight, iter=0, threshold=None):
super(InpaintingModel, self).__init__()
self.generator = G_Net(input_channels=3, residual_blocks=8, threshold=threshold)
self.discriminator = D_Net(in_channels=3, use_sigmoid=True)
self.l1_loss = nn.L1Loss()
self.adversarial_loss = AdversarialLoss('nsgan')
self.g_lr, self.d_lr = g_lr, d_lr
self.l1_weight, self.gan_weight = l1_weight, gan_weight
self.global_iter = iter
self.gen_optimizer = optim.Adam(
params=self.generator.parameters(),
lr=float(self.g_lr),
betas=(0., 0.9)
)
self.dis_optimizer = optim.Adam(
params=self.discriminator.parameters(),
lr=float(self.d_lr),
betas=(0., 0.9)
)
# if __name__ == '__main__':