-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathdata_augmentation.py
94 lines (85 loc) · 3.6 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
'''
先处理图像保存到一个文件夹下,(数据增强先做,然后读取数据就不需要边读边数据增强了)
ADE数据集:151类。
'''
import os
import cv2
import random
import numpy as np
train_img_path=r'/home/*/*/Dataset/ADE/images/training'
train_lab_path=r'/home/*/*/Dataset/ADE/annotations/training'
#val_img_path=r'/home/*/ADE/images/validation'
#val_lab_path=r'/home/*/ADE/annotations/validation'
save_path=r'/home/*/*/Dataset/ADE/HDF5'
names=sorted(os.listdir(train_img_path))
N1=20206*5 # 一个epoch 总共N1张
num=20206 # 一共num张图片,然后每张图片做5次处理,保存。
s_img_path=r'/home/*/*/Dataset/ADE/HDF5/image'#save image
s_lab_path=r'/home/*/*/Dataset/ADE/HDF5/label'
def first_data_augmen(image,label):# first
randint=random.randint(0,4)
if randint==2:
f_scale=0.5+random.randint(0,10)/10
image=cv2.resize(image,(0,0),fx=f_scale,fy=f_scale)
label=cv2.resize(label,(0,0),fx=f_scale,fy=f_scale,interpolation=cv2.INTER_NEAREST)
else :
image=image
label=label
return image,label
def final_data_augmen(image,label): # final
randint=random.randint(1,8)
if randint==1:# left-right flip
image=cv2.flip(image,1)
label=cv2.flip(label,1)
elif randint==2:# up-down-flip
image=cv2.flip(image,0)
label=cv2.flip(label,0)
elif randint==3:# rotation 90 first width and then hight
M=cv2.getRotationMatrix2D((image.shape[1]//2,image.shape[0]//2),90,1.0)
image=cv2.warpAffine(image,M,(image.shape[1],image.shape[0]),flags=cv2.INTER_NEAREST)
label=cv2.warpAffine(label,M,(image.shape[1],image.shape[0]),flags=cv2.INTER_NEAREST)
elif randint==4:# rotation 270
M=cv2.getRotationMatrix2D((image.shape[1]//2,image.shape[0]//2),270,1.0)
image=cv2.warpAffine(image,M,(image.shape[1],image.shape[0]),flags=cv2.INTER_NEAREST)
label=cv2.warpAffine(label,M,(image.shape[1],image.shape[0]),flags=cv2.INTER_NEAREST)
return image,label
def middle_data_augmen(image,label):#middle
H,W=label.shape
if H>=256 and W>=256:
# random crop
h=random.randint(0,H-256)
w=random.randint(0,W-256)
img=image[h:h+256,w:w+256,:]
lab=label[h:h+256,w:w+256]
else :
# less than 256 ,follow the minimal to 256,and the other to be int(256/min*max)
if H<W:# H is min =>256
image=cv2.resize(image,(int(W*256/H),256))# default INTER_LINEAR
label=cv2.resize(label,(int(W*256/H),256),interpolation=cv2.INTER_NEAREST)
else :# W<=H ,W is min =>256
image=cv2.resize(image,(256,int(H*256/W)))
label=cv2.resize(label,(256,int(H*256/W)),interpolation=cv2.INTER_NEAREST)
H,W=label.shape
h=random.randint(0,H-256)
w=random.randint(0,W-256)
img=image[h:h+256,w:w+256,:]
lab=label[h:h+256,w:w+256]
return img,lab
# process data
num_i=0
for i in range(num):
image=cv2.imread(os.path.join(train_img_path,names[i]),-1)
name=names[i].split('.')[0]+'.png'
print(name)
label=cv2.imread(os.path.join(train_lab_path,name),-1)
for j in range(5):
image_f,label_f=first_data_augmen(image,label)# random scale size
image_m,label_m=middle_data_augmen(image_f,label_f)# random crop
img,lab=final_data_augmen(image_m,label_m)# random flip rotation or normal
if lab.max()>150:
print('########################')
break
cv2.imwrite(os.path.join(s_img_path,str(num_i)+'.jpg'),img)
cv2.imwrite(os.path.join(s_lab_path,str(num_i)+'.png'),lab)
num_i+=1
print(num_i==N1)