-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharchive_scan.py
139 lines (108 loc) · 5.19 KB
/
archive_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import os
import utils.scan_tools as stools
from utils.args import archive_scan as archive_scan_params
from utils.seisan import get_archives
from utils.configure.configure_archive_scan import configure
from utils import utils
import utils.scanner as scanner
# Silence tensorflow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def get_model_ref(data, name_weights):
"""
Returns model reference if found by model name and model weights pair. Returns None otherwise.
data - list of tuples (model_name, model_weights_path, model_ref)
"""
for x in data:
if name_weights == x[:2]:
return x[2]
return None
if __name__ == '__main__':
params = archive_scan_params() # parse command line arguments
if params['main', 'run-configure']:
configure()
sys.exit(0)
if params['main', 'print-params']:
print(params)
if params['main', 'input']:
archives = stools.parse_archive_csv(params['main', 'input']) # parse archive names
input_mode = True
else:
archives = get_archives(seisan=params['main', 'seisan'],
mulplt=params['main', 'mulplt-def'],
archives=params['main', 'archives'],
params=params)
input_mode = False
if input_mode and params['main', 'evaluate']:
raise AttributeError('Cannot have --input and --evaluate parameters both (cannot evaluate model without seisan'
' database archive)!')
if input_mode and params['main', 'false-positives']:
raise AttributeError('Cannot have --input and --false-positives parameters both (cannot evaluate model '
'without seisan database archive)!')
if params['main', 'cpu']:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Set values
params['main', 'model-labels'] = {'p': 0, 's': 1, 'n': 2}
params['main', 'positive-labels'] = {'p': 0, 's': 1}
params['main', 'label-names'] = {'p': 'P', 's': 'S'}
params['main', 'half-duration'] = (params['main', 'features-number'] * 0.5) / params['main', 'frequency']
# Load model(s)
models_data = []
for x in params.get_station_keys(main=True):
model = get_model_ref(models_data, (params[x, 'model-name'], params[x, 'weights']))
if model:
params[x, 'model-object'] = model
continue
if params[x, 'model-name'] == 'custom-model':
import importlib
model_loader = importlib.import_module(params[x, 'model']) # import loader module
loader_call = getattr(model_loader, 'load_model') # import loader function
# Parse loader arguments
loader_argv = params[x, 'loader-argv']
argv_split = loader_argv.strip().split()
argv_dict = {}
for pair in argv_split:
spl = pair.split('=')
if len(spl) == 2:
argv_dict[spl[0]] = spl[1]
model = loader_call(**argv_dict)
else:
if params[x, 'model-name'] == 'cnn':
import utils.seismo_load as seismo_load
model = seismo_load.load_cnn(params[x, 'weights'])
elif params[x, 'model-name'] == 'gpd':
from utils.gpd_loader import load_model as load_gpd
model = load_gpd(params[x, 'weights'])
elif params[x, 'model-name'] == 'favor':
import utils.seismo_load as seismo_load
model = seismo_load.load_performer(params[x, 'weights'])
else:
raise AttributeError('"model-name" is not specified correctly! If you see this message this is a bug!')
params[x, 'model-object'] = model
models_data.append((params[x, 'model-name'], params[x, 'weights'], model))
if params['main', 'print-files']:
print('Scan archives:')
for n_archive, d_archives in enumerate(archives):
print(f'{n_archive + 1}: {d_archives["paths"]}')
print()
# Scan
all_positives, performance = scanner.archive_scan(archives, params)
# Re-write predictions files
if params['main', 'false-positives']:
stools.gather_false_positives(all_positives, params)
all_positives, events = stools.finalize_predictions(all_positives, params, input_mode=input_mode)
advanced_search_events = None
if params['main', 'advanced-search']:
advanced_search_events = scanner.advanced_search(events, params, input_mode=input_mode)
stools.output_predictions(all_positives, advanced_search_events, params,
advanced_search=True, input_mode=input_mode)
else:
stools.output_predictions(all_positives, events, params, input_mode=input_mode)
if params['main', 'time-batch']:
utils.print_time_batch(performance['batch-time'])
if params['main', 'time-archive']:
utils.print_time_archive(performance['archives-time'])
if params['main', 'walltime-archive']:
utils.print_time_archive(performance['archives-walltime'], walltime=True)
if params['main', 'time']:
print(f'\nTotal prediction time: {performance["total-performance-time"]:.6} seconds')