-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstandalone_dava.py
237 lines (179 loc) · 10.4 KB
/
standalone_dava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import networkx as nx
from standalone_dava_graphs import load_dgraph_from_lists
from standalone_dava_graphs import States
from standalone_dava_graphs import DiseaseGraph
from standalone_dava_graphs import plot_graph, bake_ids, to_directed
import time
import igraph
import copy
import numpy as np
import sys
import math
class DAVA_intervention():
def __init__(self, budget, plotting=False):
self.budget = budget
self.plotting = plotting
def intervene(self, dgraph, fast=True):
bake_ids(dgraph.g)
dgraph_copy = dgraph.copy()
start = time.time()
if fast==True:
merged_dgraph, infected_master = self.merge(dgraph_copy)
if is_tree(merged_dgraph.g):
print("It is tree!")
vacc_indexes = self.davaTREE(merged_dgraph, infected_master)
else:
#print("is not a tree.")
vacc_indexes = self.davaNORMAL(merged_dgraph, infected_master)
else:
vacc_indexes = []
for budget_used in range(self.budget):
self.budget=1
merged_dgraph, infected_master = self.merge(dgraph_copy)
if is_tree(merged_dgraph.g):
print("It is tree!")
vacc = self.davaTREE(merged_dgraph, infected_master)
else:
#print("is not a tree.")
vacc = self.davaNORMAL(merged_dgraph, infected_master)
assert len(vacc) <= 1
if len(vacc) == 0: # the dominator tree had no neighbors (no susc. node reachable from any infected node)
print("Vaccinating further makes no difference.", budget_used, "vaccines used.")
break
vacc_indexes.extend(vacc)
dgraph_copy = dgraph.copy()
dgraph_copy.g.delete_vertices(vacc_indexes) # remove nodes that are vaccinated up-to-now and restart the algorithm
for r in vacc_indexes:
dgraph.g.vs()[r]["vaccinated"] = True # only used for plotting
end = time.time()
print(f"Running dava took {end-start} seconds.")
return vacc_indexes
# Combines all infected nodes into one infected node
# New node has connections to all nodes next to an infected in graph
def merge(self, dgraph: DiseaseGraph):
g = dgraph.g
assert len(dgraph.getInfectedNodes())>0
susceptibles_next_to_infecteds = {} # maps susceptible nodes that are next to infected nodes to the weights on the edges to their infected neighbors
for i in dgraph.getInfectedNodes():
neighbours = dgraph.getSusceptibleNeighbors(i)
for n in neighbours:
if n.index in susceptibles_next_to_infecteds:
susceptibles_next_to_infecteds[n.index].append(g[i, n]) # the value being appended here is the weight between them
else:
susceptibles_next_to_infecteds[n.index] = [g[i, n], ]
to_delete_ids = [v.index for v in g.vs if v['state'] == States.I] # stored now such that infected master will not be deleted
infected_master = g.add_vertex(state=States.I, x=0.5, y=0) # x and y are just used for plotting
# If an S node had multiple I neighbors, the weight of the new edge is adjusted accordingly
for (index, weights) in susceptibles_next_to_infecteds.items():
prob = weights[0]
for val in weights[1:]:
prob = prob + (1-prob)*val # see "MERGE algorithm in the paper
g.add_edge(infected_master.index, index, weight=prob)
# Delete all old infected nodes
g.delete_vertices(to_delete_ids)
assert(len(dgraph.getInfectedNodes()) == 1)
return dgraph, dgraph.getInfectedNodes()[0]
# This is called if the merged graph is NOT a tree.
# The function constructs the dominator tree from the merged graph and then calls davaTREE with it.
def davaNORMAL(self, merged_dgraph, infected_master):
dom_tree_dgraph = merged_dgraph.copy()
dom_tree_dgraph.g.to_directed(mutual=True)
# dom_tree is a list where each value is the id of the immediately dominating vertex of that index
dom_tree = dom_tree_dgraph.g.dominator(
vid=infected_master.index, mode='OUT')
# delete old edges, we will now construct a tree by adding new (weighted) edges.
dom_tree_dgraph.g.es.delete()
# We now compute the edge weights, i.e. what the DAVA paper calls "maximum propagation path probability" (pdf p. 13)
# to do this, we leverage igraph's shortest path implementation. But since that MINIMIZES the SUM of edge weights
# (we want to MAXIMIZE the PRODUCT of edge weights), we preprocess the weights with -log(x) and later extract the
# path lengths we need by computing exp(-x). This works since exp(-(-log(a) + -log(b))) = a*b and similarly for longer paths.
edge_weights_for_shortest_paths = list(map(lambda x: -math.log(x), merged_dgraph.g.es()["weight"]))
shortest_paths = merged_dgraph.g.shortest_paths_dijkstra(source=infected_master.index, weights = edge_weights_for_shortest_paths)
shortest_paths = shortest_paths[0] # list has only one entry since we only entered one source vertex
for (index, dominator_index) in enumerate(dom_tree):
# second check is for NaN (unreachable nodes in dom tree)
if dominator_index != -1 and dominator_index == dominator_index:
if dominator_index == infected_master.index:
weight = math.exp(- shortest_paths[index])
else: # the DAVA paper notes that in the case of a dom. tree, this can be computed from other max prop. path probabilities: (pdf p.13)
weight = math.exp(shortest_paths[dominator_index] - shortest_paths[index]) # = math.exp(- shortest_paths[index])/ math.exp(- shortest_paths[dominator_index])
#print("Adding edge", index, dominator_index, weight)
dom_tree_dgraph.g.add_edge(dominator_index, index, weight=weight)
if self.plotting:
plot_graph(dom_tree_dgraph, 'dava_dom_tree.png', layout=dom_tree_dgraph.g.layout_reingold_tilford_circular(mode="ALL",root=infected_master.index),)
return self.davaTREE(dom_tree_dgraph, infected_master)
def davaTREE(self, tree_dgraph, infected_master):
benefits = []
#print("Infected master has",len(tree_dgraph.g.neighbors(infected_master, mode="OUT")),"neighbors in the dom tree.")
for n in tree_dgraph.g.neighbors(infected_master, mode="OUT"):
weight = tree_dgraph.g[infected_master, n]
partial = self.davaTREE_calPartial(
tree_dgraph.g, n, parent_node=infected_master.index)
benefits.append((n,weight*partial))
benefits.sort(key=lambda x:x[1], reverse=True)
# this list holds the dom-tree-indexes of the k (budget) nodes with highest benefit scores
domtree_node_indexes = list(map(lambda x: x[0], benefits[:self.budget]))
# since we removed some vertices along the way (during merging), we need to convert these indexes to the corresponding indexes in the input graph
originalgraph_indexes = []
for indx in domtree_node_indexes:
originalgraph_indexes.append(tree_dgraph.g.vs()[indx]["baked_index"])
return originalgraph_indexes
def davaTREE_calPartial(self, tree, start_node, parent_node=None):
neighbors = tree.neighbors(start_node, mode="OUT")
partial = 1
for n in neighbors:
if n == parent_node:
continue
partial += tree[start_node, n] * self.davaTREE_calPartial(tree, start_node=n,parent_node=start_node)
return partial
# For some reason absolutely beyond me, the igraph library doesn't provide such a function.... -.-'
def is_tree(ig):
if ig.get_edgelist() == []:
return True
nx_graph = nx.Graph(ig.get_edgelist())
return nx.is_tree(nx_graph)
# For plotting pycairo needs to be installed, see https://pycairo.readthedocs.io/en/latest/getting_started.html
def dava_intervention(edge_list, infected_list=[0], recovered_list=[], k=1, fast=True, plotting=False):
dgraph = load_dgraph_from_lists(edge_list, infected_list, recovered_list)
if plotting:
plot_graph(dgraph, name="dava_before_vaccination.png")
# perform intervention
di = DAVA_intervention(budget=k, plotting=plotting)
node_ids = di.intervene(dgraph, fast=fast)
if plotting:
plot_graph(dgraph, name="dava_after_vaccination.png")
return node_ids
if __name__ == '__main__':
print("Starting DAVA standalone..")
if len(sys.argv) < 4:
print("Usage: %s <edgelist-file> <infected-file> <recovered-file> k. Give 'empty' to skip files." % (sys.argv[0]))
exit()
# load content of files
graph_filepath = sys.argv[1]
if graph_filepath == 'empty':
print("Error: You have to give an edge list!")
exit()
with open(graph_filepath, 'r') as graph_file:
edge_list = list(map(lambda x: x.split(), graph_file.read().splitlines()))
if len(edge_list[0]) == 2: # no weights
edge_list = list(map(lambda e: (int(e[0]), int(e[1])), edge_list))
elif len(edge_list[0]) == 3: # weights
edge_list = list(map(lambda e: (int(e[0]), int(e[1]), float(e[2])), edge_list))
infected_filepath = sys.argv[2]
if infected_filepath == 'empty':
infecteds=[]
else:
with open(infected_filepath, 'r') as infecteds_file:
infecteds = list(map(int, infecteds_file.read().split()))
recovered_filepath = sys.argv[3]
if recovered_filepath == 'empty':
recovereds=[]
else:
with open(recovered_filepath, 'r') as recovereds_file:
recovereds = list(map(int, recovereds_file.read().split()))
budget = int(sys.argv[4])
vaccinated = dava_intervention(edge_list, infecteds, recovereds, k=budget, plotting=False, fast=False)
print("Vaccinated:", vaccinated)
F = open('dava_output.txt', 'w')
F.writelines([str(v) + "\n" for v in vaccinated])
F.close()