This repository has been archived by the owner on Apr 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspace_functions.py
874 lines (758 loc) · 32.1 KB
/
space_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
import math as m
import warnings
import numpy as np
import numpy.linalg as lg
from scipy.integrate import ode
from scipy.optimize import fsolve
from colorama import Fore
def AU2km(AU):
return AU*149597870.7
class earth:
mu = 398600.4418
semimajor = AU2km(1.000001018)
p_srp = 4.57e-9
J2 = 0.10826267e-2
J3 = -0.2532327e-5
radius = 6378.1363 # km
rot_speed = 0.04651 # km/s
def eccentricty(T_TDB):
return 0.01670862-0.000042037*T_TDB-0.0000001236*T_TDB**2+0.00000000004*T_TDB**3
def inclination(T_TDB, deg=False):
if deg:
return 0+0.0130546*T_TDB-0.00000931*T_TDB**2-0.000000034*T_TDB**3
else:
return np.deg2rad(0+0.0130546*T_TDB-0.00000931*T_TDB**2-0.000000034*T_TDB**3)
def RAAN(T_TDB, deg=False):
if deg:
return 174.873174-0.2410908*T_TDB+0.00004067*T_TDB**2-0.000001327*T_TDB**3
else:
return np.deg2rad(174.873174-0.2410908*T_TDB+0.00004067*T_TDB**2-0.000001327*T_TDB**3)
def ARG_PERIHELION(T_TDB, deg=False):
if deg:
return 102.937348+0.3225557*T_TDB+0.00015026*T_TDB**2+0.000000478*T_TDB**3
else:
return np.deg2rad(102.937348+0.3225557*T_TDB+0.00015026*T_TDB**2+0.000000478*T_TDB**3)
def Mean_Long(T_TDB, deg=False):
if deg:
return 100.466449+35999.3728519*T_TDB-0.00000568*T_TDB**2
else:
return np.deg2rad(100.466449+35999.3728519*T_TDB-0.00000568*T_TDB**2)
def obliquity(T_TT, deg=False):
if deg:
return 23.439279-0.0130102*T_TT-5.086e-8*T_TT**2+5.565e-7*T_TT**3+1.6e-10*T_TT**4+1.21e-11*T_TT**5
else:
return np.deg2rad(23.439279-0.0130102*T_TT-5.086e-8*T_TT**2+5.565e-7*T_TT**3+1.6e-10*T_TT**4+1.21e-11*T_TT**5)
class sun:
mu = 1.32712440042e11
radius = 6.957e5
class moon:
mu = 3903
def orbit_prop(time_series, mean_motion, eccent, time_periapsis): # propogate an eliptical orbit
# allocate memory for anomalies
E = np.empty(np.size(time_series))
M = np.empty(np.size(time_series))
nu = np.empty(np.size(time_series))
eccent_norm = lg.norm(eccent)
# Helper Functions
def f(x, m_e):
return x - eccent_norm * np.sin(x) - m_e
def df(x):
return 1 - eccent_norm * np.cos(x)
# propagate through the time series
for i in range(np.size(time_series)):
M[i] = mean_motion*(time_series[i]-time_periapsis) # mean anomaly for this time step
if M[i] < m.pi: # inital guess based on mean anomaly
guess = M[i]+eccent_norm/2
else:
guess = M[i]-eccent_norm/2
it = 0
error = 100.0
while error > 10**-10 and it <= 50: # newton raphson to find eccentric anomaly
# try:
E[i] = guess-f(guess, M[i])/df(guess)
error = np.abs((E[i]-guess)/E[i])
guess = E[i]
it = it+1
# except(ZeroDivisionError, RuntimeWarning, RuntimeError):
# print(E[i])
# print("Zero Division error")
nu[i] = 2*m.atan2(np.sqrt(1+eccent_norm)*np.tan(E[i]/2), np.sqrt(1-eccent_norm)) # find anomaly from eccentric anomaly
return nu, E, M
# class CW:
def hyper_orbit_prop(time_series, mean_motion, eccent, time_periapsis): # propogate a hyperbolic orbit
# allocate memory for anomalies
F = np.empty(np.size(time_series))
M = np.empty(np.size(time_series))
nu = np.empty(np.size(time_series))
eccent_norm = lg.norm(eccent)
# Helper Functions
def f(x, m_h):
return -x+eccent_norm*np.sinh(x)-m_h
def df(x):
return -1+eccent_norm*np.cosh(x)
# propagate through the time series
for i in range(np.size(time_series)):
M[i] = mean_motion*(time_series[i]-time_periapsis) # mean anomaly for this time step
if M[i] < m.pi: # inital guess based on mean anomaly
guess = M[i]+eccent_norm/2
else:
guess = M[i]-eccent_norm/2
it = 0
error = 100.0
while error > 10**-10 and it <= 50: # newton raphson to find eccentric anomaly
F[i] = guess-f(guess, M[i])/df(guess)
error = np.abs((F[i]-guess)/F[i])
guess = F[i]
it = it+1
nu[i] = 2*m.atan2(np.sqrt(eccent_norm+1)*np.tanh(F[i]/2), np.sqrt(eccent_norm-1)) # find anomaly from eccentric anomaly
return nu, F, M
def cart2elm(r, v, mu, deg=True): # transform position and velocity to classical orbital elements
h = np.cross(r, v)
r_norm = lg.norm(r)
v_norm = lg.norm(v)
eccent = np.cross(v, h) / mu - np.divide(r, r_norm) # eccentricity
eccent_norm = lg.norm(eccent)
energy = (v_norm**2)/2 - mu/r_norm
h_norm = lg.norm(h)
k = (h_norm ** 2) / (r_norm * mu) - 1
if energy < 0:
a = -mu/(2*energy)
elif -10e-12 < energy < 10e-12:
a = m.inf
else:
a = mu/(2*energy)
i = np.arccos(np.dot(h, [0, 0, 1])/h_norm)
n = np.cross([0, 0, 1], h)
n_norm = lg.norm(n)
if eccent_norm < 10e-12 or eccent_norm > 10e-12:
nu = np.arccos(k/eccent_norm)
if np.dot(r,v)<0:
nu = 2*m.pi-nu
RAAN = np.arccos(np.dot(n, [1, 0, 0])/n_norm)
omega = np.arccos(np.dot(n, eccent)/(eccent_norm*n_norm))
if eccent_norm < 10e-12 and i < 10e-12:
RAAN = 0
omega = 0
nu = np.arccos(r[1]/r_norm)
if r[1] < 0:
nu = 2*m.pi-nu
elif eccent_norm < 10e-12:
omega = 0
RAAN = np.arccos(np.dot(n, [1, 0, 0]) / n_norm)
nu = np.arccos(np.dot((n/n_norm),r)/r_norm)
if r[2]< 0:
nu = 2*m.pi-nu
elif i < 10e-12:
RAAN = 0
omega = np.arccos(np.dot(eccent, [1, 0, 0])/eccent_norm)
if e[1]< 0:
omega = 2*m.pi-omega
if deg:
nu = 180*nu/m.pi
i = 180*i/m.pi
RAAN = 180*RAAN/m.pi
omega = 180*omega/m.pi
E = [a, eccent_norm, i, RAAN, omega, nu]
for element in E:
if not isinstance(element, float):
print(E)
raise TypeError("One of the elements is not a float!")
return np.array(E)
def elm2cart(E, mu, deg=True): # transform classical orbital elements to cartesian position and velocity
# E - [a, e, i, RAAN, omega, nu]
a = E[0]
e = E[1]
if deg:
i = m.pi * E[2] / 180
RAAN = m.pi * E[3] / 180
omega = m.pi * E[4] / 180
nu = m.pi * E[5] / 180
else:
i = E[2]
RAAN = E[3]
omega = E[4]
nu = E[5]
p = a*(1 - e**2)
r_pqw = np.array([(p/(1+e*np.cos(nu)))*np.cos(nu), (p/(1+e*np.cos(nu)))*np.sin(nu), 0])
v_pqw = np.array([np.sqrt(mu/p)*(-np.sin(nu)), np.sqrt(mu/p)*(e+np.cos(nu)), 0])
# R_3(-RAAN)R_1(-i)R_3(-omega)
c1 = np.cos(-omega)
c2 = np.cos(-i)
c3 = np.cos(-RAAN)
s1 = np.sin(-omega)
s2 = np.sin(-i)
s3 = np.sin(-RAAN)
q1 = np.array([c1*c3-c2*s1*s3, c3*s1+c1*c2*s3, s3*s2])
q2 = np.array([-c1*s3-c3*c2*s1, c1*c2*c3-s1*s3, c1*s2])
q3 = np.array([s1*s2, -c1*s2, c2])
Q = np.array([q1, q2, q3])
r = np.matmul(Q, r_pqw)
v = np.matmul(Q, v_pqw)
return r, v
def R1(phi): # returns R1 transform matrix
return np.array([np.array([1, 0, 0 ]), np.array([0, np.cos(phi), np.sin(phi)]), np.array([0, -np.sin(phi), np.cos(phi)])])
def R2(phi): # returns R2 transform matrix
return np.array([np.array([np.cos(phi), 0, -np.sin(phi)]), np.array([0, 1, 0]), np.array([np.sin(phi), 0, np.cos(phi)])])
def R3(phi): # returns R3 transform matrix
return np.array([np.array([np.cos(phi), np.sin(phi), 0]), np.array([-np.sin(phi), np.cos(phi), 0]), np.array([0, 0, 1])])
def deg2rad(degree, minutes=0, seconds=0): # transform an array of degrees to radians
if isinstance(degree, int) or isinstance(degree, float):
return (degree+minutes/60+seconds/3600)*np.pi/180
elif isinstance(degree, list) or isinstance(degree, np.ndarray):
output = np.empty(np.size(input))
for i in range(np.size(input)):
output[i] = input[i] * np.pi / 180
return output
else:
raise TypeError("degree must be a int, float, list, or ndarray, you used a %s", str(type(degree)))
def orbit_prop_rk(r_0, v_0, T0, tF, dT): # propogate an orbit about Earth using Runge-Kutta Method
def two_body_orbit(t, Y, mu):
dY = np.empty([6, 1])
dY[0] = Y[3]
dY[1] = Y[4]
dY[2] = Y[5]
r = np.sqrt(Y[0] ** 2 + Y[1] ** 2 + Y[2] ** 2)
dY[3] = -mu * Y[0] / r ** 3
dY[4] = -mu * Y[1] / r ** 3
dY[5] = -mu * Y[2] / r ** 3
return dY
MU = 398600.4415
def derivFcn(t, y):
return two_body_orbit(t, y, MU)
Y_0 = np.concatenate([r_0, v_0], axis=0)
rv = ode(derivFcn)
# The integrator type 'dopri5' is the same as MATLAB's ode45()!
# rtol and atol are the relative and absolute tolerances, respectively
rv.set_integrator('dopri5', rtol=1e-10, atol=1e-20)
rv.set_initial_value(Y_0, T0)
output = []
output.append(np.insert(Y_0, 0, T0))
# Run the integrator and populate output array with positions and velocities
while rv.successful() and rv.t < tF: # rv.successful() and
rv.integrate(rv.t + dT)
output.append(np.insert(rv.y, 0, rv.t))
# Convert the output a numpy array for later use
output = np.array(output)
t = output[:, 0]
r_vec = np.empty([np.shape(output)[0]-1, 3])
v_vec = np.empty([np.shape(output)[0]-1, 3])
for i in range(np.shape(output)[0]-1):
r_vec[i, 0] = output[i, 1]
r_vec[i, 1] = output[i, 2]
r_vec[i, 2] = output[i, 3]
v_vec[i, 0] = output[i, 4]
v_vec[i, 1] = output[i, 5]
v_vec[i, 2] = output[i, 6]
return r_vec, v_vec
def CRTBP_prop_rk(r_0, v_0, T0, tF, dT, MU): # propogate an orbit in the CRTBP frame
def CRTBP_orbit(t, Y, mu):
dY = np.empty([6, 1])
dY[0] = Y[3]
dY[1] = Y[4]
dY[2] = Y[5]
r1 = np.sqrt((Y[0]+mu)**2+Y[1]**2+Y[2]**2)
r2 = np.sqrt((Y[0]+mu-1)**2+Y[1]**2+Y[2]**2)
dY[3] = 2*dY[1]+Y[0]-(1-mu)*(Y[0]+mu)/r1**3-mu*(Y[0]+mu-1)/r2**3
dY[4] = -2*dY[0] + Y[1]-(1-mu)*Y[1]/r1**3-mu*Y[1]/r2**3
dY[5] = -(1-mu)*Y[2]/r1**3-mu*Y[2]/r2**3
return dY
def derivFcn(t, y):
return CRTBP_orbit(t, y, MU)
Y_0 = np.concatenate([r_0, v_0], axis=0)
rv = ode(derivFcn)
# The integrator type 'dopri5' is the same as MATLAB's ode45()!
# rtol and atol are the relative and absolute tolerances, respectively
rv.set_integrator('dopri5', rtol=1e-10, atol=1e-20)
rv.set_initial_value(Y_0, T0)
output = []
output.append(np.insert(Y_0, 0, T0))
# Run the integrator and populate output array with positions and velocities
while rv.successful() and rv.t < tF: # rv.successful() and
rv.integrate(rv.t + dT)
output.append(np.insert(rv.y, 0, rv.t))
# Convert the output a numpy array for later use
output = np.array(output)
t = output[:, 0]
r_vec = np.empty([np.shape(output)[0], 3])
v_vec = np.empty([np.shape(output)[0], 3])
for i in range(np.shape(output)[0]):
r_vec[i, 0] = output[i, 1]
r_vec[i, 1] = output[i, 2]
r_vec[i, 2] = output[i, 3]
v_vec[i, 0] = output[i, 4]
v_vec[i, 1] = output[i, 5]
v_vec[i, 2] = output[i, 6]
return r_vec, v_vec
def lagrange(mu): # returns a 2x5 vector of lagrange points given mu
f = lambda r_x: r_x - (1 - mu) * (r_x + mu) / np.abs(r_x + mu) ** 3 - mu * (r_x - (1 - mu)) / np.abs(
r_x + mu - 1) ** 3
r_x = np.array([-1, 0, 1])
r_0_roots = np.array(fsolve(f, r_x))
roots_x = np.append(r_0_roots, [.5 - mu, .5 - mu])
roots_y = np.array([0, 0, 0, np.sqrt(3) / 2, -np.sqrt(3) / 2])
points = np.column_stack((roots_x, roots_y))
return points
def rad2deg(x):
return x*180/m.pi
def Date2JD(year, month, day, hour, minute, second):
return 367*year-np.floor((7*(year+np.floor((month+9)/12)))/4)+np.floor(275*month/9)+day+1721013.5+(1/24)*(hour+(1/60)*(minute+second/60))
def JD2MJD(JD):
return JD - 2400000.5
def JD2DOY(JulianDate):
T_1900 = (JulianDate-2415019.5)/365.25
year = 1900+np.trunc(T_1900)
LeapYears = np.trunc((year-1901)*.25)
Days = (JulianDate-2415019.5)-((year-1900)*365+LeapYears)
if Days < 1.0:
year = year-1
LeapYears = np.trunc((year-1901)*25)
Days = (JulianDate- 2415019.5)-((year-1900)*365+LeapYears)
return np.trunc(Days)
def time2radians(hour, minute, seconds):
return 15*(hour+minute/60+seconds/3600)*np.pi/180
def JD2ERA(JulianDate):
return np.mod(2*np.pi*(0.779057273264+1.00273781191135448*(JulianDate-2451545)), 2*np.pi)
def polarMotion(x_p, y_p, s_prime):
return np.matmul(R3(-s_prime), np.matmul(R2(x_p),R1(y_p)))
def JulianCenturies(JulianDate):
return (JulianDate-2451545)/36525
def MJDCenturies(MJD):
return (MJD-51544.5)/36525
def s_prime(centuries_tt):
return deg2rad(0, seconds=-0.000047 * centuries_tt)
def precession_nutation(X, Y, s):
a = (0.5+0.125*(X**2+Y**2))
return np.matmul(np.array([[1-a*X**2, -a*X*Y, X], [-a*X*Y, 1-a*Y**2, Y], [-X, -Y, 1-a*(X**2+Y**2)]]), R3(s))
def sun_pos(JulianDate, AU=False):
JulianDate = JulianDate-2400000.5
T = MJDCenturies(JulianDate)
longitude_sun = deg2rad(280.46+36000.771*T)
M = deg2rad(357.52772333 + 35999.0534*T)
longitude_ecliptic = longitude_sun + np.deg2rad(1.914666471*np.sin(M)+0.019994643*np.sin(2*M))
radius = 1.000140612-0.016708617*np.cos(M) - 0.000139589*np.cos(2*M)
obliquity = deg2rad(23.439291-0.0130042*T)
# print([T, longitude_sun, M, longitude_ecliptic, radius, ecliptic])
if AU:
return np.array([radius*np.cos(longitude_ecliptic), radius*np.cos(obliquity)*np.sin(longitude_ecliptic), radius*np.sin(obliquity)*np.sin(longitude_ecliptic)])
else:
return np.multiply(np.array([radius*np.cos(longitude_ecliptic), radius*np.cos(obliquity)*np.sin(longitude_ecliptic), radius*np.sin(obliquity)*np.sin(longitude_ecliptic)]),149597870)
def MOD2GCRF(Julian_Date):
Julian_Date = Julian_Date-2400000.5
JCTT = MJDCenturies(Julian_Date)
zeta = deg2rad(0, seconds=2306.2181*JCTT+0.30188*JCTT**2+0.017998*JCTT**3)
theta = deg2rad(0, seconds=2004.3109*JCTT-0.42665*JCTT**2-0.041833*JCTT**3)
z = deg2rad(0, seconds=2306.2181*JCTT+1.09468*JCTT**2+0.018203*JCTT**3)
return np.matmul(R3(zeta),np.matmul(R2(-theta), R3(z)))
def J20002GCRF():
delta = deg2rad(0, seconds=0.0146)
zeta = deg2rad(0, seconds=-0.16617)
eta = deg2rad(0, seconds=-0.0068192)
return np.matmul(R3(-delta),np.matmul(R2(-zeta), R1(eta)))
def orbit_prop_3body(r_0, v_0, T0, tF, dT):
def three_body_orbit(t, Y, mu):
dY = np.empty([6, 1])
dY[0] = Y[3]
dY[1] = Y[4]
dY[2] = Y[5]
r = lg.norm(Y[0:3])
t = t/86400+2451545
sun_range = np.matmul(MOD2GCRF(t),sun_pos(t))
sat2sun = sun_range - Y[0:3]
sat2sun_norm = lg.norm(sat2sun)
sun_range_norm = lg.norm(sun_range)
dY[3] = (-mu * Y[0] / r ** 3) + sun.mu*(sat2sun[0]/((sat2sun_norm)**3)-sun_range[0]/sun_range_norm**3)
dY[4] = (-mu * Y[1] / r ** 3) + sun.mu*(sat2sun[1]/((sat2sun_norm)**3)-sun_range[1]/sun_range_norm**3)
dY[5] = (-mu * Y[2] / r ** 3) + sun.mu*(sat2sun[2]/((sat2sun_norm)**3)-sun_range[2]/sun_range_norm**3)
return dY
def derivFcn(t, y):
return three_body_orbit(t, y, earth.mu)
Y_0 = np.concatenate([r_0, v_0], axis=0)
rv = ode(derivFcn)
# The integrator type 'dopri5' is the same as MATLAB's ode45()!
# rtol and atol are the relative and absolute tolerances, respectively
rv.set_integrator('dopri5', rtol=1e-10, atol=1e-20)
rv.set_initial_value(Y_0, T0)
output = []
output.append(np.insert(Y_0, 0, T0))
# Run the integrator and populate output array with positions and velocities
while rv.successful() and rv.t < tF: # rv.successful() and
rv.integrate(rv.t + dT)
output.append(np.insert(rv.y, 0, rv.t))
if not rv.successful() and rv.t<tF:
warnings.warn("Runge Kutta Failed!", RuntimeWarning)
# Convert the output a numpy array for later use
output = np.array(output)
t = output[:, 0]
r_vec = np.empty([np.shape(output)[0]-1, 3])
v_vec = np.empty([np.shape(output)[0]-1, 3])
for i in range(np.shape(output)[0]-1):
r_vec[i, 0] = output[i, 1]
r_vec[i, 1] = output[i, 2]
r_vec[i, 2] = output[i, 3]
v_vec[i, 0] = output[i, 4]
v_vec[i, 1] = output[i, 5]
v_vec[i, 2] = output[i, 6]
return r_vec, v_vec
def KepEqtnE(M, e):
if -np.pi < M < 0 or M>np.pi:
E = M-e
else:
E = M+e
E_old = E
count = 0
while(count<10e4):
E = E_old+(M-E_old+e*np.sin(E_old))/(1-e*np.cos(E_old))
count = count+1
if (abs(E - E_old) < 10e-6):
break
E_old = E
return E
def PlanetRV(JD_TDB, MJD=False):
if not MJD:
JD_TDB = JD_TDB - 2400000.5
T_TDB = MJDCenturies(JD_TDB)
M = earth.Mean_Long(T_TDB) - earth.ARG_PERIHELION(T_TDB)
arg_periapsis = (earth.ARG_PERIHELION(T_TDB) - earth.RAAN(T_TDB))
eccentric_anomaly = KepEqtnE(M, earth.eccentricty(T_TDB))
# elements - a e i RAAN arg peri nu
nu = 2 * m.atan2(np.sqrt(1 + earth.eccentricty(T_TDB)) * np.tan(eccentric_anomaly / 2), np.sqrt(1 - earth.eccentricty(T_TDB)))
r, v = elm2cart([earth.semimajor, earth.eccentricty(T_TDB), earth.inclination(T_TDB), earth.RAAN(T_TDB), arg_periapsis, nu], sun.mu, deg=False)
r = np.matmul(R1(-earth.obliquity(T_TDB)), r)
v = np.matmul(R1(-earth.obliquity(T_TDB)), v)
return r, v
def orbit_prop_3body_RV(r_0, v_0, T0, tF, dT):
def three_body_orbit(t, Y, mu):
dY = np.empty([6, 1])
dY[0] = Y[3]
dY[1] = Y[4]
dY[2] = Y[5]
r = lg.norm(Y[0:3])
t = t/86400+2451545
sun_range, _ = PlanetRV(t)
sun_range = np.matmul(J20002GCRF(), sun_range)
sun_range = np.multiply(sun_range, -1)
sat2sun = sun_range - Y[0:3]
sat2sun_norm = lg.norm(sat2sun)
sun_range_norm = lg.norm(sun_range)
dY[3] = (-mu * Y[0] / r ** 3) + sun.mu*(sat2sun[0]/((sat2sun_norm)**3)-sun_range[0]/sun_range_norm**3)
dY[4] = (-mu * Y[1] / r ** 3) + sun.mu*(sat2sun[1]/((sat2sun_norm)**3)-sun_range[1]/sun_range_norm**3)
dY[5] = (-mu * Y[2] / r ** 3) + sun.mu*(sat2sun[2]/((sat2sun_norm)**3)-sun_range[2]/sun_range_norm**3)
return dY
def derivFcn(t, y):
return three_body_orbit(t, y, earth.mu)
Y_0 = np.concatenate([r_0, v_0], axis=0)
rv = ode(derivFcn)
# The integrator type 'dopri5' is the same as MATLAB's ode45()!
# rtol and atol are the relative and absolute tolerances, respectively
rv.set_integrator('dopri5', rtol=1e-10, atol=1e-20)
rv.set_initial_value(Y_0, T0)
output = []
output.append(np.insert(Y_0, 0, T0))
# Run the integrator and populate output array with positions and velocities
while rv.successful() and rv.t < tF: # rv.successful() and
rv.integrate(rv.t + dT)
output.append(np.insert(rv.y, 0, rv.t))
if not rv.successful() and rv.t<tF:
warnings.warn("Runge Kutta Failed!", RuntimeWarning)
# Convert the output a numpy array for later use
output = np.array(output)
t = output[:, 0]
r_vec = np.empty([np.shape(output)[0]-1, 3])
v_vec = np.empty([np.shape(output)[0]-1, 3])
for i in range(np.shape(output)[0]-1):
r_vec[i, 0] = output[i, 1]
r_vec[i, 1] = output[i, 2]
r_vec[i, 2] = output[i, 3]
v_vec[i, 0] = output[i, 4]
v_vec[i, 1] = output[i, 5]
v_vec[i, 2] = output[i, 6]
return r_vec, v_vec
def J2J3_Pert(r):
r_norm = lg.norm(r)
a_2 = np.multiply(3 * earth.mu * earth.J2 * earth.radius ** 2 / (2 * r_norm ** 5),
[r[0] * (5 * (r[2] / r_norm) ** 2 - 1), r[1] * (5 * (r[2] / r_norm) ** 2 - 1),
r[2] * (5 * (r[2] / r_norm) ** 2 - 3)])
a_3 = np.multiply(-5 * earth.J3 * earth.mu * earth.radius ** 3 / (2 * r_norm ** 7),
[r[0] * (3 * r[2] - 7 * r[2] ** 3 / r_norm ** 2), r[1] * (3 * r[2] - 7 * r[2] ** 3 / r_norm ** 2),
6 * r[2] ** 2 - 7 * r[2] ** 4 / r_norm ** 2 - (3 / 5) * r_norm ** 2])
a_p = a_2 + a_3
return np.array(a_p)
def SRP_Pert(r, r_sun, C_r, A_m):
return np.array(np.multiply(earth.p_srp * C_r * A_m, np.divide(-1 * r_sun + r, lg.norm(r_sun - r))))
def drag_pert(r, v, density_table, C_D, A_m):
if isinstance(r, np.ndarray) or isinstance(r, list):
radius = np.linalg.norm(r)
base_alt = np.array(density_table['Base Altitude'])
scl_hgt = np.array(density_table['Scale Height'])
nom_dens = np.multiply(np.array(density_table['Nominal Density']), 1000**3)
del density_table
idx = ((np.divide(np.abs(base_alt - radius), 10)).astype(int)).argmin() # return the base altitude index
density = nom_dens[idx]*np.exp(-(radius-base_alt[idx])/scl_hgt[idx])
return np.array(np.multiply(-.5*C_D*A_m*density*lg.norm(v), v))
def sun_3body_pert(t, r):
t = t / 86400 + 2451545
sun_range, _ = PlanetRV(t)
sun_range = np.matmul(J20002GCRF(), sun_range)
sun_range = np.multiply(sun_range, -1)
sat2sun = sun_range - r
sat2sun_norm = lg.norm(sat2sun)
sun_range_norm = lg.norm(sun_range)
return sat2sun_norm, sat2sun, sun_range_norm, sun_range
def orbit_prop_all_pert(r_0, v_0, T0, tF, dT, conds):
def three_body_orbit(t, Y, mu):
dY = np.empty([6, 1])
dY[0] = Y[3]
dY[1] = Y[4]
dY[2] = Y[5]
r = lg.norm(Y[0:3])
t = t/86400+conds.epoch
sat2sun_norm, sat2sun, sun_range_norm, sun_range = sun_3body_pert(t, Y[0:3])
a_d = drag_pert(Y[0:3], [Y[3:6]], conds.density_table, conds.C_D, conds.A_m)
a_j = J2J3_Pert(Y[0:3])
a_srp = SRP_Pert(Y[0:3], sun_range, conds.C_r, conds.A_m)
a_other = np.squeeze(a_d+a_srp+a_j, axis=0)
dY[3] = (-mu * Y[0] / r ** 3) + sun.mu*(sat2sun[0]/((sat2sun_norm)**3)-sun_range[0]/sun_range_norm**3) + a_other[0]
dY[4] = (-mu * Y[1] / r ** 3) + sun.mu*(sat2sun[1]/((sat2sun_norm)**3)-sun_range[1]/sun_range_norm**3) + a_other[1]
dY[5] = (-mu * Y[2] / r ** 3) + sun.mu*(sat2sun[2]/((sat2sun_norm)**3)-sun_range[2]/sun_range_norm**3) + a_other[2]
return dY
def derivFcn(t, y):
return three_body_orbit(t, y, earth.mu)
Y_0 = np.concatenate([r_0, v_0], axis=0)
rv = ode(derivFcn)
# The integrator type 'dopri5' is the same as MATLAB's ode45()!
# rtol and atol are the relative and absolute tolerances, respectively
rv.set_integrator('dopri5', rtol=1e-10, atol=1e-20)
rv.set_initial_value(Y_0, T0)
output = []
output.append(np.insert(Y_0, 0, T0))
# Run the integrator and populate output array with positions and velocities
while rv.successful() and rv.t < tF: # rv.successful() and
rv.integrate(rv.t + dT)
output.append(np.insert(rv.y, 0, rv.t))
if not rv.successful() and rv.t<tF:
warnings.warn("Runge Kutta Failed!", RuntimeWarning)
# Convert the output a numpy array for later use
output = np.array(output)
t = output[:, 0]
r_vec = np.empty([np.shape(output)[0]-1, 3])
v_vec = np.empty([np.shape(output)[0]-1, 3])
for i in range(np.shape(output)[0]-1):
r_vec[i, 0] = output[i, 1]
r_vec[i, 1] = output[i, 2]
r_vec[i, 2] = output[i, 3]
v_vec[i, 0] = output[i, 4]
v_vec[i, 1] = output[i, 5]
v_vec[i, 2] = output[i, 6]
return r_vec, v_vec
def cylindrical_shadow(r_sc, r_sun):
if np.dot(r_sc, r_sun/lg.norm(r_sun))< -np.sqrt(lg.norm(r_sc) ** 2 - earth.radius ** 2):
return 0
else:
return 1
def period(a):
return 2 * np.pi * np.sqrt(a ** 3 / earth.mu)
def up_shadow(r, sun_pos):
a = np.arcsin(sun.radius / lg.norm(sun_pos + r))
b = np.arcsin(earth.radius / lg.norm(r))
c = np.arccos(np.dot(r, (sun_pos + r)) / (lg.norm(r) * lg.norm(sun_pos + r)))
if c < np.abs(a - b):
return 0
elif a + b <= c:
return 1
else:
x = (c ** 2 + a ** 2 - b ** 2) / (2 * c)
y = np.sqrt(a ** 2 - x ** 2)
A = a ** 2 * np.arccos(x / a) + b ** 2 * np.arccos((c - x) / b) - c * y
return 1 - A / (np.pi * a ** 2)
def density(radius):
if isinstance(radius, np.ndarray) or isinstance(radius, list):
radius = np.linalg.norm(radius)
url = 'https://raw.githubusercontent.com/ggb367/Spring-2020/master/366L/hw7/density.csv'
altitude = radius - sf.earth.radius
density = pd.read_csv(url)
base_alt = np.array(density['Base Altitude'])
scl_hgt = np.array(density['Scale Height'])
nom_dens = np.multiply(np.array(density['Nominal Density']), 1000**3)
del density
idx = ((np.divide(np.abs(base_alt - altitude), 10)).astype(int)).argmin() # return the base altitude index
density = nom_dens[idx]*np.exp(-(altitude-base_alt[idx])/scl_hgt[idx])
return density
def cw_prop(n_T, rho_rel_0, rho_dot_rel_0, T_0, T_F, dT):
if not ((isinstance(rho_rel_0, np.ndarray) or isinstance(rho_rel_0, list)) and (isinstance(rho_dot_rel_0, np.ndarray) or isinstance(rho_dot_rel_0, list))):
raise TypeError("Rho is of type ", type(rho_rel_0), "and Rho_dot is of type ", type(rho_dot_rel_0), "but they need to be a list or a numpy.ndarray!")
x_0 = rho_rel_0[0]
y_0 = rho_rel_0[1]
z_0 = rho_rel_0[2]
xd_0 = rho_dot_rel_0[0]
yd_0 = rho_dot_rel_0[1]
zd_0 = rho_dot_rel_0[2]
def x(t):
nt = n_T*t
return (4-3*np.cos(nt))*x_0+(np.sin(nt)/n_T)*xd_0+(2/n_T)*(1-np.cos(nt))*yd_0
def y(t):
nt = n_T*t
return 6*(np.sin(nt)-nt)*x_0+y_0+(2/n_T)*(np.cos(nt)-1)*xd_0+(1/n_T)*(4*np.sin(nt)-3*nt)*yd_0
def z(t):
nt = n_T*t
return np.cos(nt)*z_0+(np.sin(nt)/n_T)*zd_0
def xd(t):
nt = n_T*t
return 3*n_T*np.sin(nt)*x_0+np.cos(nt)*xd_0+2*np.sin(nt)*yd_0
def yd(t):
nt = n_T*t
return 6*n_T*(np.cos(nt)-1)*x_0-2*np.sin(nt)*xd_0+(4*np.cos(nt)-3)*yd_0
def zd(t):
nt = n_T*t
return -n_T*np.sin(nt)*z_0+np.cos(nt)*zd_0
time_series = np.arange(T_0, T_F, dT)
rho_rel = np.zeros([np.size(time_series), 3])
rho_dot_rel = np.zeros([np.size(time_series), 3])
count = 0
# rho_rel[0, :] = rho_rel_0
# rho_dot_rel[0, :] = rho_dot_rel_0
for time_step in time_series:
rho_rel[count, :] = np.array([x(time_step), y(time_step), z(time_step)])
rho_dot_rel[count, :] = np.array([xd(time_step), yd(time_step), zd(time_step)])
count = count+1
return rho_rel, rho_dot_rel
def mean_motion(period, deg=False):
if deg:
return 360/period
else:
return 2*np.pi/period
def IOD_Gibbs(r1, r2, r3, t1, t2, t3):
def Gibbs(r1, r2, r3):
Z_12 = np.cross(r1, r2)
Z_23 = np.cross(r2, r3)
Z_31 = np.cross(r3, r1)
r1_norm = lg.norm(r1)
r2_norm = lg.norm(r2)
r3_norm = lg.norm(r3)
alpha_cop = np.pi/2-np.arccos(np.dot(Z_23/lg.norm(Z_23), np.divide(r1, r1_norm)))
if alpha_cop >5*np.pi/180:
print(Fore.RED+"Alpha_cop is: %f degrees" % (alpha_cop*180/np.pi))
warnings.warn("Vectors may not be coplanar and IOD may breakdown")
print(Fore.RESET)
N = np.multiply(r1_norm, Z_23)+np.multiply(r2_norm, Z_31)+np.multiply(r3_norm, Z_12)
D = Z_12+Z_23+Z_31
S = np.multiply(r2_norm-r3_norm, r1)+np.multiply(r3_norm-r1_norm, r2)+np.multiply(r1_norm-r2_norm, r3)
B = np.cross(D, r2)
N_norm = lg.norm(N)
D_norm = lg.norm(D)
h = np.sqrt((N_norm*earth.mu)/D_norm)
L_g = np.sqrt(earth.mu/(N_norm*D_norm))
v2 = np.multiply(L_g/r2_norm, B) + np.multiply(L_g, S)
return r2, v2
def Herrick_Gibbs(r1, r2, r3, t1, t2, t3):
r1_norm = lg.norm(r1)
Z_23 = np.cross(r2, r3)
alpha_cop = np.pi/2-np.arccos(np.dot(Z_23, np.divide(r1, r1_norm)))
if alpha_cop>5*np.pi/180:
warnings.warn("Vectors may not be coplanar and IOD may breakdown")
delta_t31 = t3-t1
delta_t32 = t3-t2
delta_t21 = t2-t1
r2_norm = lg.norm(r2)
r3_norm = lg.norm(r3)
x = -delta_t32*(1/(delta_t21*delta_t31)+earth.mu/(12*r1_norm**3))
y = (delta_t32-delta_t21)*(1/(delta_t21*delta_t32)+earth.mu/(12*r2_norm**3))
z = delta_t21*(1/(delta_t32*delta_t31)+earth.mu/(12*r3_norm**3))
v2 = np.multiply(x, r1)+np.multiply(y, r2)+np.multiply(z, r3)
return r2, v2
case1 = np.dot(np.divide(r1, lg.norm(r1)), np.divide(r2, lg.norm(r2)))
alpha_12 = np.arccos(case1)
if r1[2]<0:
alpha_12 = 2*np.pi-alpha_12
case2 = np.dot(np.divide(r2, lg.norm(r2)), np.divide(r3, lg.norm(r3)))
alpha_23 = np.arccos(case2)
if r2[2]<0:
alpha_23 = 2*np.pi-alpha_23
if alpha_12<np.pi/180 or alpha_23<np.pi/180:
print("Using Herrick-Gibbs because alpha_12 is %f, and alpha_23 is %f" % (alpha_12*180/np.pi, alpha_23*180/np.pi))
return Herrick_Gibbs(r1, r2, r3, t1, t2, t3)
elif alpha_12>5*np.pi/180 or alpha_23>5*np.pi/180:
print("Using Gibbs because alpha_12 is %f, and alpha_23 is %f"%(alpha_12*180/np.pi, alpha_23*180/np.pi))
return Gibbs(r1, r2, r3)
else:
print(Fore.RED+"We are in uncertain waters, alpha_12 is: %f and alpha_23 is %f"%(alpha_12, alpha_23))
choosing = True
while(choosing):
choice = input("If you want to use Herrick-Gibbs, input 0, if you would like to use Gibbs, input 1")
if choice:
choosing = False
return Gibbs(r1, r2, r3)
elif not choice:
choosing = False
return Herrick_Gibbs(r1, r2, r3, t1, t2, t3)
else:
print("that was an invalid option")
def razel2SEZ(params , deg=True):
range = params[0]
az = params[1]
el = params[2]
if deg:
az = np.deg2rad(az)
el = np.deg2rad(el)
r = np.array([-range*np.cos(el)*np.cos(az), range*np.cos(el)*np.sin(az), range*np.sin(el)])
return r
def ITRF2SEZ(phi_gd, lamda):
return np.matmul(R2(np.pi/2-phi_gd), R3(lamda))
def SEZ2ITRF(r_SEZ, R_ITRF): # dumb, for use only in hw10
return np.matmul(np.transpose(ITRF2SEZ(0, 0)), r_SEZ)+R_ITRF
def Lambert_Gauss(r_0, r, dt, t_m):
r_0_norm = lg.norm(r_0)
r_norm = lg.norm(r)
cos_nu = np.dot(r_0, r)/(r_0_norm*r_norm)
nu = np.arccos(np.dot(r_0, r)/(r_0_norm*r_norm))
if r_0[2]<0:
nu = 2*pi - nu
t = (r_0_norm+r_norm)/(4*np.sqrt(r_0_norm*r_norm)*np.cos(nu/2))-1/2
m = 1*dt**2/(2*np.sqrt(r_0_norm*r_norm)*np.cos(nu/2))**3
y = 1
error = 1
count = 0
while error > 10e-6:
x1 = m/y**2 - t
x2 = (4/3)*(1+6*x1/5+(6*8*x1**2)/(5*7)+(6*8*10*x1**3)/(5*7*9))
this_y = 1+x2*(t+x1)
error = np.abs(this_y-y)/y
y = this_y
count = count +1
if count >10e5:
warnings.warn("The method failed to converge")
break
cos_E = 1-2*x1
p = (r_0_norm*r_norm*(1-cos_nu))/(r_0_norm+r_norm-2*np.sqrt(r_0_norm*r_norm)*np.cos(nu/2)*cos_E)
f = 1-(r_norm/p)*(1-cos_nu)
g = (r_norm*r_0_norm*np.sin(nu))/np.sqrt(1*p)
# f_dot = np.sqrt(1/p)*np.tan(nu/2)*((1-np.cos(nu))/p - 1/r_norm-1/r_0_norm)
g_dot = 1-(r_0_norm/p)*(1-np.cos(nu))
v_0 = np.divide(r-np.multiply(f, r_0), g)
v = np.divide(np.multiply(g_dot, r)-r_0, g)
return v_0, v
def Lambert_MinEng(r_0, r):
r_0_norm = lg.norm(r_0)
r_norm = lg.norm(r)
cos_nu = np.dot(r_0, r)/(r_0_norm*r_norm)
sin_nu = np.sqrt(1-cos_nu**2)
c = np.sqrt(r_0_norm**2+r_norm**2-2*r_0_norm*r_norm*cos_nu)
s = (r_0_norm+r_norm+c)/2
t_abs = (1/3)*np.sqrt(2/1)*(s**1.5-(s-c)**1.5)
a_min = s/2
p_min = (r_0_norm*r_norm/c)*(1-cos_nu)
e_min = np.sqrt(1-(2*p_min)/s)
v_0 = np.multiply(np.sqrt(1*p_min)/(r_0_norm*r_norm*sin_nu), (r-np.multiply((1-r_norm/p_min*(1-cos_nu)), r_0)))
return a_min, e_min, t_abs ,v_0
def Lambert_Focus_Finder(r1 ,r2, a):
d = np.abs(lg.norm(r1-r2))
r1_norm = lg.norm(r1)
r2_norm = lg.norm(r2)
R = 2*a-r1_norm
r = 2*a-r2_norm
x = (d**2-r**2+R**2)/(2*d)
a = (1-d)*np.sqrt(4*d**2*R**2-(d**2-r**2+R**2)**2)
y = a/2
# origin assumed at r1 but the origin is actually at the first focus
f1 = np.array([x, y, 0])-r1
f2 = np.array([x, -1*y, 0])-r1
return f1, f2