-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenmax_postprocessor.py
255 lines (211 loc) · 9.09 KB
/
openmax_postprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import libmr
import numpy as np
import scipy.spatial.distance as spd
import torch
import torch.nn as nn
from tqdm import tqdm
from .base_postprocessor import BasePostprocessor
from .info import get_num_classes
class OpenMax(BasePostprocessor):
def __init__(self, config):
super(OpenMax, self).__init__(config)
self.nc = get_num_classes(config.dataset.name)
self.weibull_alpha = 3
self.weibull_threshold = 0.9
self.weibull_tail = 20
self.setup_flag = False
self.has_data_based_setup = True
def setup(self, net: nn.Module, id_loader_dict, ood_loder_dict, id_loader_split="train"):
print(f"Setup on ID data - {id_loader_split} split")
if not self.setup_flag:
# Fit the weibull distribution from training data.
print('Fittting Weibull distribution...')
_, mavs, dists = compute_train_score_and_mavs_and_dists(
self.nc, id_loader_dict[id_loader_split], device='cuda', net=net)
categories = list(range(0, self.nc))
self.weibull_model = fit_weibull(mavs, dists, categories,
self.weibull_tail, 'euclidean')
self.setup_flag = True
else:
pass
@torch.no_grad()
def postprocess(self, net: nn.Module, data):
net.eval()
scores = net(data).cpu().numpy()
scores = np.array(scores)[:, np.newaxis, :]
categories = list(range(0, self.nc))
pred_openmax = []
score_openmax = []
for score in scores:
so, _ = openmax(self.weibull_model, categories, score, 0.5,
self.weibull_alpha,
'euclidean') # openmax_prob, softmax_prob
pred_openmax.append(
np.argmax(so) if np.max(so) >= self.weibull_threshold else (
self.nc - 1))
score_openmax.append(so)
pred = torch.tensor(pred_openmax)
conf = -1 * torch.from_numpy(np.array(score_openmax))[:, -1]
return pred, conf
def compute_channel_distances(mavs, features, eu_weight=0.5):
"""
Input:
mavs (channel, C)
features: (N, channel, C)
Output:
channel_distances: dict of distance distribution from MAV
for each channel.
"""
eucos_dists, eu_dists, cos_dists = [], [], []
for channel, mcv in enumerate(mavs): # Compute channel specific distances
eu_dists.append(
[spd.euclidean(mcv, feat[channel]) for feat in features])
cos_dists.append([spd.cosine(mcv, feat[channel]) for feat in features])
eucos_dists.append([
spd.euclidean(mcv, feat[channel]) * eu_weight +
spd.cosine(mcv, feat[channel]) for feat in features
])
return {
'eucos': np.array(eucos_dists),
'cosine': np.array(cos_dists),
'euclidean': np.array(eu_dists)
}
def compute_train_score_and_mavs_and_dists(train_class_num, trainloader,
device, net):
scores = [[] for _ in range(train_class_num)]
train_dataiter = iter(trainloader)
with torch.no_grad():
for train_step in tqdm(range(1,
len(train_dataiter) + 1),
desc='Progress: ',
position=0,
leave=True):
batch = next(train_dataiter)
data = batch['data'].cuda()
target = batch['label'].cuda()
# this must cause error for cifar
outputs = net(data)
for score, t in zip(outputs, target):
if torch.argmax(score) == t:
scores[t].append(score.unsqueeze(dim=0).unsqueeze(dim=0))
try:
assert np.array([len(x) for x in scores]).min() > 0
except AssertionError:
print('WARNING - a class is missing from predictions')
missing_classes = list(np.where(np.array([len(x) for x in scores]) == 0)[0])
print('Missing classes: ', missing_classes)
print('Filling missing classes with scores from targets')
train_dataiter = iter(trainloader)
with torch.no_grad():
for train_step in tqdm(range(1,
len(train_dataiter) + 1),
desc='Progress: ',
position=0,
leave=True):
batch = next(train_dataiter)
data = batch['data'].cuda()
target = batch['label'].cuda()
# this must cause error for cifar
outputs = net(data)
for score, t in zip(outputs, target):
if t in missing_classes:
scores[t].append(score.unsqueeze(dim=0).unsqueeze(dim=0))
scores = [torch.cat(x).cpu().numpy() for x in scores] # (N_c, 1, C) * C
mavs = np.array([np.mean(x, axis=0) for x in scores]) # (C, 1, C)
dists = [
compute_channel_distances(mcv, score)
for mcv, score in zip(mavs, scores)
]
return scores, mavs, dists
def fit_weibull(means, dists, categories, tailsize=20, distance_type='eucos'):
"""
Input:
means (C, channel, C)
dists (N_c, channel, C) * C
Output:
weibull_model : Perform EVT based analysis using tails of distances
and save weibull model parameters for re-adjusting
softmax scores
"""
weibull_model = {}
for mean, dist, category_name in zip(means, dists, categories):
weibull_model[category_name] = {}
weibull_model[category_name]['distances_{}'.format(
distance_type)] = dist[distance_type]
weibull_model[category_name]['mean_vec'] = mean
weibull_model[category_name]['weibull_model'] = []
for channel in range(mean.shape[0]):
mr = libmr.MR()
tailtofit = np.sort(dist[distance_type][channel, :])[-tailsize:]
mr.fit_high(tailtofit, len(tailtofit))
weibull_model[category_name]['weibull_model'].append(mr)
return weibull_model
def compute_openmax_prob(scores, scores_u):
prob_scores, prob_unknowns = [], []
for s, su in zip(scores, scores_u):
channel_scores = np.exp(s)
channel_unknown = np.exp(np.sum(su))
total_denom = np.sum(channel_scores) + channel_unknown
prob_scores.append(channel_scores / total_denom)
prob_unknowns.append(channel_unknown / total_denom)
# Take channel mean
scores = np.mean(prob_scores, axis=0)
unknowns = np.mean(prob_unknowns, axis=0)
modified_scores = scores.tolist() + [unknowns]
return modified_scores
def query_weibull(category_name, weibull_model, distance_type='eucos'):
return [
weibull_model[category_name]['mean_vec'],
weibull_model[category_name]['distances_{}'.format(distance_type)],
weibull_model[category_name]['weibull_model']
]
def calc_distance(query_score, mcv, eu_weight, distance_type='eucos'):
if distance_type == 'eucos':
query_distance = spd.euclidean(mcv, query_score) * eu_weight + \
spd.cosine(mcv, query_score)
elif distance_type == 'euclidean':
query_distance = spd.euclidean(mcv, query_score)
elif distance_type == 'cosine':
query_distance = spd.cosine(mcv, query_score)
else:
print('distance type not known: enter either of eucos, \
euclidean or cosine')
return query_distance
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def openmax(weibull_model,
categories,
input_score,
eu_weight,
alpha=10,
distance_type='eucos'):
"""Re-calibrate scores via OpenMax layer
Output:
openmax probability and softmax probability
"""
nb_classes = len(categories)
ranked_list = input_score.argsort().ravel()[::-1][:alpha]
alpha_weights = [((alpha + 1) - i) / float(alpha)
for i in range(1, alpha + 1)]
omega = np.zeros(nb_classes)
omega[ranked_list] = alpha_weights
scores, scores_u = [], []
for channel, input_score_channel in enumerate(input_score):
score_channel, score_channel_u = [], []
for c, category_name in enumerate(categories):
mav, dist, model = query_weibull(category_name, weibull_model,
distance_type)
channel_dist = calc_distance(input_score_channel, mav[channel],
eu_weight, distance_type)
wscore = model[channel].w_score(channel_dist)
modified_score = input_score_channel[c] * (1 - wscore * omega[c])
score_channel.append(modified_score)
score_channel_u.append(input_score_channel[c] - modified_score)
scores.append(score_channel)
scores_u.append(score_channel_u)
scores = np.asarray(scores)
scores_u = np.asarray(scores_u)
openmax_prob = np.array(compute_openmax_prob(scores, scores_u))
softmax_prob = softmax(np.array(input_score.ravel()))
return openmax_prob, softmax_prob