forked from instructor-ai/instructor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_sitemap.py
177 lines (145 loc) · 6.03 KB
/
make_sitemap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import asyncio
import yaml
from typing import Optional
from collections.abc import Generator
from openai import AsyncOpenAI
import typer
from rich.console import Console
from rich.progress import Progress
import hashlib
from asyncio import as_completed
import tenacity
console = Console()
def traverse_docs(
root_dir: str = "docs",
) -> Generator[tuple[str, str, str], None, None]:
"""
Recursively traverse the docs folder and yield the path, content, and content hash of each file.
Args:
root_dir (str): The root directory to start traversing from. Defaults to 'docs'.
Yields:
Tuple[str, str, str]: A tuple containing the relative path from 'docs', the file content, and the content hash.
"""
for root, _, files in os.walk(root_dir):
for file in files:
if file.endswith(".md"): # Assuming we're only interested in Markdown files
file_path = os.path.join(root, file)
relative_path = os.path.relpath(file_path, root_dir)
with open(file_path, encoding="utf-8") as f:
content = f.read()
content_hash = hashlib.md5(content.encode()).hexdigest()
yield relative_path, content, content_hash
@tenacity.retry(
stop=tenacity.stop_after_attempt(3),
wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
retry=tenacity.retry_if_exception_type(Exception),
before_sleep=lambda retry_state: console.print(
f"[yellow]Retrying summarization... (Attempt {retry_state.attempt_number})[/yellow]"
),
)
async def summarize_content(client: AsyncOpenAI, path: str, content: str) -> str:
"""
Summarize the content of a file with retry logic.
Args:
client (AsyncOpenAI): The AsyncOpenAI client.
path (str): The path of the file.
content (str): The content of the file.
Returns:
str: A summary of the content.
Raises:
Exception: If all retry attempts fail.
"""
try:
response = await client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that summarizes text.",
},
{"role": "user", "content": content},
{
"role": "user",
"content": "Please summarize the content in a few sentences so they can be used for SEO. Include core ideas, objectives, and important details and key points and key words",
},
],
max_tokens=4000,
)
return response.choices[0].message.content
except Exception as e:
console.print(f"[bold red]Error summarizing {path}: {str(e)}[/bold red]")
raise # Re-raise the exception to trigger a retry
async def generate_sitemap(
root_dir: str,
output_file: str,
api_key: Optional[str] = None,
max_concurrency: int = 5,
) -> None:
"""
Generate a sitemap from the given root directory.
Args:
root_dir (str): The root directory to start traversing from.
output_file (str): The output file to save the sitemap.
api_key (Optional[str]): The OpenAI API key. If not provided, it will be read from the OPENAI_API_KEY environment variable.
max_concurrency (int): The maximum number of concurrent tasks. Defaults to 5.
"""
client = AsyncOpenAI(api_key=api_key)
# Load existing sitemap if it exists
existing_sitemap: dict[str, dict[str, str]] = {}
if os.path.exists(output_file):
with open(output_file, encoding="utf-8") as sitemap_file:
existing_sitemap = yaml.safe_load(sitemap_file) or {}
sitemap_data: dict[str, dict[str, str]] = {}
async def process_file(
path: str, content: str, content_hash: str
) -> tuple[str, dict[str, str]]:
if (
path in existing_sitemap
and existing_sitemap[path].get("hash") == content_hash
):
return path, existing_sitemap[path]
try:
summary = await summarize_content(client, path, content)
return path, {"summary": summary, "hash": content_hash}
except Exception as e:
console.print(
f"[bold red]Failed to summarize {path} after multiple attempts: {str(e)}[/bold red]"
)
return path, {"summary": "Failed to generate summary", "hash": content_hash}
files_to_process: list[tuple[str, str, str]] = list(traverse_docs(root_dir))
total_files = len(files_to_process)
with Progress() as progress:
task = progress.add_task("[green]Processing files...", total=total_files)
semaphore = asyncio.Semaphore(max_concurrency)
async def bounded_process_file(*args):
async with semaphore:
return await process_file(*args)
tasks = [
bounded_process_file(path, content, content_hash)
for path, content, content_hash in files_to_process
]
for completed_task in as_completed(tasks):
path, result = await completed_task
sitemap_data[path] = result
progress.update(task, advance=1)
# Save intermediate results
with open(output_file, "w", encoding="utf-8") as sitemap_file:
yaml.dump(sitemap_data, sitemap_file, default_flow_style=False)
console.print(
f"[bold green]Sitemap has been generated and saved to {output_file}[/bold green]"
)
app = typer.Typer()
@app.command()
def main(
root_dir: str = typer.Option("docs", help="Root directory to traverse"),
output_file: str = typer.Option("sitemap.yaml", help="Output file for the sitemap"),
api_key: Optional[str] = typer.Option(None, help="OpenAI API key"),
max_concurrency: int = typer.Option(5, help="Maximum number of concurrent tasks"),
):
"""
Generate a sitemap from the given root directory.
"""
asyncio.run(generate_sitemap(root_dir, output_file, api_key, max_concurrency))
if __name__ == "__main__":
app()