-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathSimpleMipProgramMb.java
90 lines (77 loc) · 3.04 KB
/
SimpleMipProgramMb.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Minimal example to call the MIP solver.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.modelbuilder.LinearExpr;
import com.google.ortools.modelbuilder.ModelBuilder;
import com.google.ortools.modelbuilder.ModelSolver;
import com.google.ortools.modelbuilder.SolveStatus;
import com.google.ortools.modelbuilder.Variable;
// [END import]
/** Minimal Mixed Integer Programming example to showcase calling the solver. */
public final class SimpleMipProgramMb {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// [START model]
// Create the linear model.
ModelBuilder model = new ModelBuilder();
// [END model]
// [START variables]
double infinity = java.lang.Double.POSITIVE_INFINITY;
// x and y are integer non-negative variables.
Variable x = model.newIntVar(0.0, infinity, "x");
Variable y = model.newIntVar(0.0, infinity, "y");
System.out.println("Number of variables = " + model.numVariables());
// [END variables]
// [START constraints]
// x + 7 * y <= 17.5.
model.addLessOrEqual(LinearExpr.newBuilder().add(x).addTerm(y, 7), 17.5).withName("c0");
// x <= 3.5.
model.addLessOrEqual(x, 3.5).withName("c1");
System.out.println("Number of constraints = " + model.numConstraints());
// [END constraints]
// [START objective]
// Maximize x + 10 * y.
model.maximize(LinearExpr.newBuilder().add(x).addTerm(y, 10.0));
// [END objective]
// [START solver]
// Create the solver with the SCIP backend and check it is supported.
ModelSolver solver = new ModelSolver("scip");
if (!solver.solverIsSupported()) {
return;
}
// [END solver]
// [START solve]
final SolveStatus status = solver.solve(model);
// [END solve]
// [START print_solution]
if (status == SolveStatus.OPTIMAL) {
System.out.println("Solution:");
System.out.println("Objective value = " + solver.getObjectiveValue());
System.out.println("x = " + solver.getValue(x));
System.out.println("y = " + solver.getValue(y));
} else {
System.err.println("The problem does not have an optimal solution!");
}
// [END print_solution]
// [START advanced]
System.out.println("\nAdvanced usage:");
System.out.println("Problem solved in " + solver.getWallTime() + " seconds");
// [END advanced]
}
private SimpleMipProgramMb() {}
}
// [END program]