-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathassignment_mb.py
109 lines (94 loc) · 2.93 KB
/
assignment_mb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MIP example that solves an assignment problem."""
# [START program]
# [START import]
import io
import pandas as pd
from ortools.linear_solver.python import model_builder
# [END import]
def main():
# Data
# [START data_model]
data_str = """
worker task cost
w1 t1 90
w1 t2 80
w1 t3 75
w1 t4 70
w2 t1 35
w2 t2 85
w2 t3 55
w2 t4 65
w3 t1 125
w3 t2 95
w3 t3 90
w3 t4 95
w4 t1 45
w4 t2 110
w4 t3 95
w4 t4 115
w5 t1 50
w5 t2 110
w5 t3 90
w5 t4 100
"""
data = pd.read_table(io.StringIO(data_str), sep=r"\s+")
# [END data_model]
# Create the model.
# [START model]
model = model_builder.Model()
# [END model]
# Variables
# [START variables]
# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = model.new_bool_var_series(name="x", index=data.index)
# [END variables]
# Constraints
# [START constraints]
# Each worker is assigned to at most 1 task.
for unused_name, tasks in data.groupby("worker"):
model.add(x[tasks.index].sum() <= 1)
# Each task is assigned to exactly one worker.
for unused_name, workers in data.groupby("task"):
model.add(x[workers.index].sum() == 1)
# [END constraints]
# Objective
# [START objective]
model.minimize(data.cost.dot(x))
# [END objective]
# [START solve]
# Create the solver with the CP-SAT backend, and solve the model.
solver = model_builder.Solver("sat")
if not solver.solver_is_supported():
return
status = solver.solve(model)
# [END solve]
# Print solution.
# [START print_solution]
if (
status == model_builder.SolveStatus.OPTIMAL
or status == model_builder.SolveStatus.FEASIBLE
):
print(f"Total cost = {solver.objective_value}\n")
selected = data.loc[solver.values(x).loc[lambda x: x == 1].index]
for unused_index, row in selected.iterrows():
print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}")
else:
print("No solution found.")
# [END print_solution]
if __name__ == "__main__":
main()
# [END program]