-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathbasic_example.py
95 lines (80 loc) · 2.97 KB
/
basic_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Minimal example to call the GLOP solver."""
# [START program]
# [START import]
from ortools.init.python import init
from ortools.linear_solver import pywraplp
# [END import]
def main():
print("Google OR-Tools version:", init.OrToolsVersion.version_string())
# [START solver]
# Create the linear solver with the GLOP backend.
solver = pywraplp.Solver.CreateSolver("GLOP")
if not solver:
print("Could not create solver GLOP")
return
# [END solver]
# [START variables]
# Create the variables x and y.
x_var = solver.NumVar(0, 1, "x")
y_var = solver.NumVar(0, 2, "y")
print("Number of variables =", solver.NumVariables())
# [END variables]
# [START constraints]
infinity = solver.infinity()
# Create a linear constraint, x + y <= 2.
constraint = solver.Constraint(-infinity, 2, "ct")
constraint.SetCoefficient(x_var, 1)
constraint.SetCoefficient(y_var, 1)
print("Number of constraints =", solver.NumConstraints())
# [END constraints]
# [START objective]
# Create the objective function, 3 * x + y.
objective = solver.Objective()
objective.SetCoefficient(x_var, 3)
objective.SetCoefficient(y_var, 1)
objective.SetMaximization()
# [END objective]
# [START solve]
print(f"Solving with {solver.SolverVersion()}")
result_status = solver.Solve()
# [END solve]
# [START print_solution]
print(f"Status: {result_status}")
if result_status != pywraplp.Solver.OPTIMAL:
print("The problem does not have an optimal solution!")
if result_status == pywraplp.Solver.FEASIBLE:
print("A potentially suboptimal solution was found")
else:
print("The solver could not solve the problem.")
return
print("Solution:")
print("Objective value =", objective.Value())
print("x =", x_var.solution_value())
print("y =", y_var.solution_value())
# [END print_solution]
# [START advanced]
print("Advanced usage:")
print(f"Problem solved in {solver.wall_time():d} milliseconds")
print(f"Problem solved in {solver.iterations():d} iterations")
# [END advanced]
if __name__ == "__main__":
init.CppBridge.init_logging("basic_example.py")
cpp_flags = init.CppFlags()
cpp_flags.stderrthreshold = True
cpp_flags.log_prefix = False
init.CppBridge.set_flags(cpp_flags)
main()
# [END program]