-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcumulative.cc
405 lines (359 loc) · 17 KB
/
cumulative.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/cumulative.h"
#include <algorithm>
#include <functional>
#include <vector>
#include "absl/log/check.h"
#include "absl/strings/str_join.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cumulative_energy.h"
#include "ortools/sat/disjunctive.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/precedences.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/timetable.h"
#include "ortools/sat/timetable_edgefinding.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
std::function<void(Model*)> Cumulative(
const std::vector<IntervalVariable>& vars,
const std::vector<AffineExpression>& demands, AffineExpression capacity,
SchedulingConstraintHelper* helper) {
return [=](Model* model) mutable {
if (vars.empty()) return;
auto* intervals = model->GetOrCreate<IntervalsRepository>();
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* watcher = model->GetOrCreate<GenericLiteralWatcher>();
// Redundant constraints to ensure that the resource capacity is high enough
// for each task. Also ensure that no task consumes more resource than what
// is available. This is useful because the subsequent propagators do not
// filter the capacity variable very well.
for (int i = 0; i < demands.size(); ++i) {
if (intervals->MaxSize(vars[i]) == 0) continue;
LinearConstraintBuilder builder(model, kMinIntegerValue, IntegerValue(0));
builder.AddTerm(demands[i], IntegerValue(1));
builder.AddTerm(capacity, IntegerValue(-1));
LinearConstraint ct = builder.Build();
std::vector<Literal> enforcement_literals;
if (intervals->IsOptional(vars[i])) {
enforcement_literals.push_back(intervals->PresenceLiteral(vars[i]));
}
// If the interval can be of size zero, it currently do not count towards
// the capacity. TODO(user): Change that since we have optional interval
// for this.
if (intervals->MinSize(vars[i]) == 0) {
enforcement_literals.push_back(encoder->GetOrCreateAssociatedLiteral(
intervals->Size(vars[i]).GreaterOrEqual(IntegerValue(1))));
}
if (enforcement_literals.empty()) {
LoadLinearConstraint(ct, model);
} else {
LoadConditionalLinearConstraint(enforcement_literals, ct, model);
}
}
if (vars.size() == 1) return;
const SatParameters& parameters = *(model->GetOrCreate<SatParameters>());
// Detect a subset of intervals that needs to be in disjunction and add a
// Disjunctive() constraint over them.
if (parameters.use_disjunctive_constraint_in_cumulative()) {
// TODO(user): We need to exclude intervals that can be of size zero
// because the disjunctive do not "ignore" them like the cumulative
// does. That is, the interval [2,2) will be assumed to be in
// disjunction with [1, 3) for instance. We need to uniformize the
// handling of interval with size zero.
std::vector<IntervalVariable> in_disjunction;
IntegerValue min_of_demands = kMaxIntegerValue;
const IntegerValue capa_max = integer_trail->UpperBound(capacity);
for (int i = 0; i < vars.size(); ++i) {
const IntegerValue size_min = intervals->MinSize(vars[i]);
if (size_min == 0) continue;
const IntegerValue demand_min = integer_trail->LowerBound(demands[i]);
if (2 * demand_min > capa_max) {
in_disjunction.push_back(vars[i]);
min_of_demands = std::min(min_of_demands, demand_min);
}
}
// Liftable? We might be able to add one more interval!
if (!in_disjunction.empty()) {
IntervalVariable lift_var;
IntegerValue lift_size(0);
for (int i = 0; i < vars.size(); ++i) {
const IntegerValue size_min = intervals->MinSize(vars[i]);
if (size_min == 0) continue;
const IntegerValue demand_min = integer_trail->LowerBound(demands[i]);
if (2 * demand_min > capa_max) continue;
if (min_of_demands + demand_min > capa_max && size_min > lift_size) {
lift_var = vars[i];
lift_size = size_min;
}
}
if (lift_size > 0) {
in_disjunction.push_back(lift_var);
}
}
// Add a disjunctive constraint on the intervals in in_disjunction. Do not
// create the cumulative at all when all intervals must be in disjunction.
//
// TODO(user): Do proper experiments to see how beneficial this is, the
// disjunctive will propagate more but is also using slower algorithms.
// That said, this is more a question of optimizing the disjunctive
// propagation code.
//
// TODO(user): Another "known" idea is to detect pair of tasks that must
// be in disjunction and to create a Boolean to indicate which one is
// before the other. It shouldn't change the propagation, but may result
// in a faster one with smaller explanations, and the solver can also take
// decision on such Boolean.
//
// TODO(user): A better place for stuff like this could be in the
// presolver so that it is easier to disable and play with alternatives.
if (in_disjunction.size() > 1) AddDisjunctive(in_disjunction, model);
if (in_disjunction.size() == vars.size()) return;
}
if (helper == nullptr) {
helper = intervals->GetOrCreateHelper(vars);
}
SchedulingDemandHelper* demands_helper =
intervals->GetOrCreateDemandHelper(helper, demands);
intervals->RegisterCumulative({capacity, helper, demands_helper});
// For each variables that is after a subset of task ends (i.e. like a
// makespan objective), we detect it and add a special constraint to
// propagate it.
//
// TODO(user): Models that include the makespan as a special interval might
// be better, but then not everyone does that. In particular this code
// allows to have decent lower bound on the large cumulative minizinc
// instances.
//
// TODO(user): this require the precedence constraints to be already loaded,
// and there is no guarantee of that currently. Find a more robust way.
//
// TODO(user): There is a bit of code duplication with the disjunctive
// precedence propagator. Abstract more?
if (parameters.use_hard_precedences_in_cumulative()) {
// The CumulativeIsAfterSubsetConstraint() always reset the helper to the
// forward time direction, so it is important to also precompute the
// precedence relation using the same direction! This is needed in case
// the helper has already been used and set in the other direction.
if (!helper->SynchronizeAndSetTimeDirection(true)) {
model->GetOrCreate<SatSolver>()->NotifyThatModelIsUnsat();
return;
}
std::vector<IntegerVariable> index_to_end_vars;
std::vector<int> index_to_task;
index_to_end_vars.clear();
for (int t = 0; t < helper->NumTasks(); ++t) {
const AffineExpression& end_exp = helper->Ends()[t];
// TODO(user): Handle generic affine relation?
if (end_exp.var == kNoIntegerVariable || end_exp.coeff != 1) continue;
index_to_end_vars.push_back(end_exp.var);
index_to_task.push_back(t);
}
// TODO(user): This can lead to many constraints. By analyzing a bit more
// the precedences, we could restrict that. In particular for cases were
// the cumulative is always (bunch of tasks B), T, (bunch of tasks A) and
// task T always in the middle, we never need to explicit list the
// precedence of a task in B with a task in A.
//
// TODO(user): If more than one variable are after the same set of
// intervals, we should regroup them in a single constraint rather than
// having two independent constraint doing the same propagation.
std::vector<FullIntegerPrecedence> full_precedences;
if (parameters.exploit_all_precedences()) {
model->GetOrCreate<PrecedenceRelations>()->ComputeFullPrecedences(
index_to_end_vars, &full_precedences);
}
for (const FullIntegerPrecedence& data : full_precedences) {
const int size = data.indices.size();
if (size <= 1) continue;
const IntegerVariable var = data.var;
std::vector<int> subtasks;
std::vector<IntegerValue> offsets;
IntegerValue sum_of_demand_max(0);
for (int i = 0; i < size; ++i) {
const int t = index_to_task[data.indices[i]];
subtasks.push_back(t);
sum_of_demand_max += integer_trail->LevelZeroUpperBound(demands[t]);
// We have var >= end_exp.var + offset, so
// var >= (end_exp.var + end_exp.cte) + (offset - end_exp.cte)
// var >= task end + new_offset.
const AffineExpression& end_exp = helper->Ends()[t];
offsets.push_back(data.offsets[i] - end_exp.constant);
}
if (sum_of_demand_max > integer_trail->LevelZeroLowerBound(capacity)) {
VLOG(2) << "Cumulative precedence constraint! var= " << var
<< " #task: " << absl::StrJoin(subtasks, ",");
CumulativeIsAfterSubsetConstraint* constraint =
new CumulativeIsAfterSubsetConstraint(var, capacity, subtasks,
offsets, helper,
demands_helper, model);
constraint->RegisterWith(watcher);
model->TakeOwnership(constraint);
}
}
}
// Propagator responsible for applying Timetabling filtering rule. It
// increases the minimum of the start variables, decrease the maximum of the
// end variables, and increase the minimum of the capacity variable.
TimeTablingPerTask* time_tabling =
new TimeTablingPerTask(capacity, helper, demands_helper, model);
time_tabling->RegisterWith(watcher);
model->TakeOwnership(time_tabling);
// Propagator responsible for applying the Overload Checking filtering rule.
// It increases the minimum of the capacity variable.
if (parameters.use_overload_checker_in_cumulative()) {
AddCumulativeOverloadChecker(capacity, helper, demands_helper, model);
}
if (parameters.use_conservative_scale_overload_checker()) {
// Since we use the potential DFF conflict on demands to apply the
// heuristic, only do so if any demand is greater than 1.
bool any_demand_greater_than_one = false;
for (int i = 0; i < vars.size(); ++i) {
const IntegerValue demand_min = integer_trail->LowerBound(demands[i]);
if (demand_min > 1) {
any_demand_greater_than_one = true;
break;
}
}
if (any_demand_greater_than_one) {
AddCumulativeOverloadCheckerDff(capacity, helper, demands_helper,
model);
}
}
// Propagator responsible for applying the Timetable Edge finding filtering
// rule. It increases the minimum of the start variables and decreases the
// maximum of the end variables,
if (parameters.use_timetable_edge_finding_in_cumulative() &&
helper->NumTasks() <=
parameters.max_num_intervals_for_timetable_edge_finding()) {
TimeTableEdgeFinding* time_table_edge_finding =
new TimeTableEdgeFinding(capacity, helper, demands_helper, model);
time_table_edge_finding->RegisterWith(watcher);
model->TakeOwnership(time_table_edge_finding);
}
};
}
std::function<void(Model*)> CumulativeTimeDecomposition(
const std::vector<IntervalVariable>& vars,
const std::vector<AffineExpression>& demands, AffineExpression capacity,
SchedulingConstraintHelper* helper) {
return [=](Model* model) {
if (vars.empty()) return;
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
CHECK(integer_trail->IsFixed(capacity));
const Coefficient fixed_capacity(
integer_trail->UpperBound(capacity).value());
const int num_tasks = vars.size();
SatSolver* sat_solver = model->GetOrCreate<SatSolver>();
IntegerEncoder* encoder = model->GetOrCreate<IntegerEncoder>();
IntervalsRepository* repository = model->GetOrCreate<IntervalsRepository>();
std::vector<AffineExpression> start_exprs;
std::vector<AffineExpression> end_exprs;
std::vector<IntegerValue> fixed_demands;
for (int t = 0; t < num_tasks; ++t) {
start_exprs.push_back(repository->Start(vars[t]));
end_exprs.push_back(repository->End(vars[t]));
CHECK(integer_trail->IsFixed(demands[t]));
fixed_demands.push_back(integer_trail->LowerBound(demands[t]));
}
// Compute time range.
IntegerValue min_start = kMaxIntegerValue;
IntegerValue max_end = kMinIntegerValue;
for (int t = 0; t < num_tasks; ++t) {
min_start =
std::min(min_start, integer_trail->LowerBound(start_exprs[t]));
max_end = std::max(max_end, integer_trail->UpperBound(end_exprs[t]));
}
for (IntegerValue time = min_start; time < max_end; ++time) {
std::vector<LiteralWithCoeff> literals_with_coeff;
for (int t = 0; t < num_tasks; ++t) {
if (!sat_solver->Propagate()) return;
const IntegerValue start_min =
integer_trail->LowerBound(start_exprs[t]);
const IntegerValue end_max = integer_trail->UpperBound(end_exprs[t]);
if (end_max <= time || time < start_min || fixed_demands[t] == 0) {
continue;
}
// Task t consumes the resource at time if consume_condition is true.
std::vector<Literal> consume_condition;
const Literal consume = Literal(model->Add(NewBooleanVariable()), true);
// Task t consumes the resource at time if it is present.
if (repository->IsOptional(vars[t])) {
consume_condition.push_back(repository->PresenceLiteral(vars[t]));
}
// Task t overlaps time.
consume_condition.push_back(encoder->GetOrCreateAssociatedLiteral(
start_exprs[t].LowerOrEqual(IntegerValue(time))));
consume_condition.push_back(encoder->GetOrCreateAssociatedLiteral(
end_exprs[t].GreaterOrEqual(IntegerValue(time + 1))));
model->Add(ReifiedBoolAnd(consume_condition, consume));
// this is needed because we currently can't create a boolean variable
// if the model is unsat.
if (sat_solver->ModelIsUnsat()) return;
literals_with_coeff.push_back(
LiteralWithCoeff(consume, Coefficient(fixed_demands[t].value())));
}
// The profile cannot exceed the capacity at time.
sat_solver->AddLinearConstraint(false, Coefficient(0), true,
fixed_capacity, &literals_with_coeff);
// Abort if UNSAT.
if (sat_solver->ModelIsUnsat()) return;
}
};
}
std::function<void(Model*)> CumulativeUsingReservoir(
const std::vector<IntervalVariable>& vars,
const std::vector<AffineExpression>& demands, AffineExpression capacity,
SchedulingConstraintHelper* helper) {
return [=](Model* model) {
if (vars.empty()) return;
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* repository = model->GetOrCreate<IntervalsRepository>();
CHECK(integer_trail->IsFixed(capacity));
const IntegerValue fixed_capacity(
integer_trail->UpperBound(capacity).value());
std::vector<AffineExpression> times;
std::vector<AffineExpression> deltas;
std::vector<Literal> presences;
const int num_tasks = vars.size();
for (int t = 0; t < num_tasks; ++t) {
CHECK(integer_trail->IsFixed(demands[t]));
times.push_back(repository->Start(vars[t]));
deltas.push_back(demands[t]);
times.push_back(repository->End(vars[t]));
deltas.push_back(demands[t].Negated());
if (repository->IsOptional(vars[t])) {
presences.push_back(repository->PresenceLiteral(vars[t]));
presences.push_back(repository->PresenceLiteral(vars[t]));
} else {
presences.push_back(encoder->GetTrueLiteral());
presences.push_back(encoder->GetTrueLiteral());
}
}
AddReservoirConstraint(times, deltas, presences, 0, fixed_capacity.value(),
model);
};
}
} // namespace sat
} // namespace operations_research