-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathdiophantine.h
133 lines (118 loc) · 5.79 KB
/
diophantine.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_DIOPHANTINE_H_
#define OR_TOOLS_SAT_DIOPHANTINE_H_
#include <cstdint>
#include <vector>
#include "absl/numeric/int128.h"
#include "absl/types/span.h"
namespace operations_research::sat {
// Reduces v modulo the elements_to_consider first elements of the (normal
// form) basis. The leading coeff of a basis element is the last one. In other
// terms, basis has the form:
// * A 0 0 0 0 0
// * * B 0 0 0 0
// * * * C 0 0 0
// .............
// with non-zero pivots elements A, B, C, ... and the reduction is performed in
// such a way that for a pivot P of the basis and the correspond entry x of v at
// the end of the reduction, we have
// -floor(|P|/2) <= v < ceil(|P|/2).
void ReduceModuloBasis(absl::Span<const std::vector<absl::int128>> basis,
int elements_to_consider, std::vector<absl::int128>& v);
// Returns an ordering of the indices of coefficients such that the GCD of its
// initial segments decreases fast. As the product of the 15 smallest prime
// numbers is the biggest fitting in an int64_t, it is guaranteed that the GCD
// becomes stationary after at most 15 steps. Returns an empty vector if the GCD
// is equal to the absolute value of one of the coefficients.
std::vector<int> GreedyFastDecreasingGcd(absl::Span<const int64_t> coeffs);
// The comments here describe basic feature of the fields. See more details in
// the description of the function below SolveDiophantine.
struct DiophantineSolution {
// One of the coefficients is equal to the GCD of all coefficients.
bool no_reformulation_needed;
// false if the equation is proven infeasible.
bool has_solutions;
// Order of indices of the next fields.
// This is a permutation of [0, num_vars_of_initial_equation). It starts by
// the chosen pivots.
std::vector<int> index_permutation;
// Special (reduced) solution of the constraint. Only coefficients of pivots
// are specified. Further coefficients are 0.
// All coefficients except the first one are guaranteed to be int64_t (see
// ReductionModuloBasis).
std::vector<absl::int128> special_solution;
// Reduced basis of the kernel.
// All coefficients except the first one are guaranteed to be int64_t (see
// ReductionModuloBasis).
// Size is index_order.size() - 1.
std::vector<std::vector<absl::int128>> kernel_basis;
// Bounds of kernel multiples.
// Same size as kernel_basis.
std::vector<absl::int128> kernel_vars_lbs;
std::vector<absl::int128> kernel_vars_ubs;
};
// Gives a parametric description of the solutions of the Diophantine equation
// with n variables:
// sum(coeffs[i] * x[i]) = rhs.
// var_lbs and var_ubs are bounds on desired values for variables x_i's.
//
// It is known that, ignoring variable bounds, the set of solutions of such an
// equation is
// 1. either empty if the gcd(coeffs[i]) does not divide rhs;
// 2. or the sum of a special solution and an element of the kernel of the
// equation.
// In case 1, the function return .has_solution = false;
// In case 2, if one coefficient is equal to the GCD of all (in absolute value),
// returns .no_reformulation_needed = true. Otherwise, it behaves as follows:
//
// The kernel of the equation as dimension n-1.
//
// We assume we permute the variable by index_permutation, such that the first k
// k terms have a gcd equal to the gcd of all coefficient (it is possible to do
// this with k <= 15).
// Under this assumption, we can find:
// * a special solution that is entirely supported by the k first variables;
// * a basis {b[0], b[1], ..., b[n-2]} of the kernel such that:
// - for i = 0 ... k-2, b[i][j] = 0 if j > i+1;
// - for i >= k-1, b[i][j] = 0 if j >= k except b[i][i+1] = 1.
// The function returns the k first coefficients of the special solution and the
// at most k first non-zero coefficients of each elements of the basis.
//
// In other terms, solutions have the form, for i in [0, k):
// x[i] = special_solution[i] + sum(sum linear_basis[j][i] * y[j])
// where:
// * y[j] is a newly created variable for 0 <= j < k - 1;
// * y[j] = x[index_permutation[j + 1]] otherwise.
//
// The function reduces the basis and the special solution in such a way that
// the only coefficients that could get outside the range of input coefficients
// are the first coefficient of the special solution and the first coefficient
// of each element of the basis (see ReduceModuloBasis for more specific
// conditions).
//
// Moreover, the function compute bounds for the newly created variables using
// bounds of the variables passed as input. Note that:
// * It can happen that a computed upper bound is lower than the corresponding
// lower bound. It happens when a newly created variable can be bounded on an
// interval containing no integer. In such a case, the function returns
// .has_solution = false.
// * The returned bounds describe a necessary condition for
// x[i] in [var_lbs[i], var_ubs[i]]
// but not a sufficient one.
DiophantineSolution SolveDiophantine(absl::Span<const int64_t> coeffs,
int64_t rhs,
absl::Span<const int64_t> var_lbs,
absl::Span<const int64_t> var_ubs);
} // namespace operations_research::sat
#endif // OR_TOOLS_SAT_DIOPHANTINE_H_