-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvicreg_loss.py
95 lines (79 loc) · 3.2 KB
/
vicreg_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import torch.nn.functional as F
def invariance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor:
"""Computes mse loss given batch of projected features z1 from view 1 and
projected features z2 from view 2.
Args:
z1 (torch.Tensor): NxD Tensor containing projected features from view 1.
z2 (torch.Tensor): NxD Tensor containing projected features from view 2.
Returns:
torch.Tensor: invariance loss (mean squared error).
"""
return F.mse_loss(z1, z2)
def variance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor:
"""Computes variance loss given batch of projected features z1 from view 1
and projected features z2 from view 2.
Args:
z1 (torch.Tensor): NxD Tensor containing projected features from view 1.
z2 (torch.Tensor): NxD Tensor containing projected features from view 2.
Returns:
torch.Tensor: variance regularization loss.
"""
eps = 1e-4
std_z1 = torch.sqrt(z1.var(dim=0) + eps)
std_z2 = torch.sqrt(z2.var(dim=0) + eps)
std_loss = torch.mean(F.relu(1 - std_z1)) + torch.mean(F.relu(1 - std_z2))
return std_loss
def covariance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor:
"""Computes covariance loss given batch of projected features z1 from view
1 and projected features z2 from view 2.
Args:
z1 (torch.Tensor): NxD Tensor containing projected features from view 1.
z2 (torch.Tensor): NxD Tensor containing projected features from view 2.
Returns:
torch.Tensor: covariance regularization loss.
"""
N, D = z1.size()
z1 = z1 - z1.mean(dim=0)
z2 = z2 - z2.mean(dim=0)
cov_z1 = (z1.T @ z1) / (N - 1)
cov_z2 = (z2.T @ z2) / (N - 1)
diag = torch.eye(D, device=z1.device)
cov_loss = (
cov_z1[~diag.bool()].pow_(2).sum() / D
+ cov_z2[~diag.bool()].pow_(2).sum() / D
)
return cov_loss
class VicRegLoss(torch.nn.Module):
def __init__(
self,
sim_loss_weight: float = 25.0,
var_loss_weight: float = 25.0,
cov_loss_weight: float = 1.0,
) -> None:
"""
Args:
sim_loss_weight (float): invariance loss weight.
var_loss_weight (float): variance loss weight.
cov_loss_weight (float): covariance loss weight.
"""
super().__init__()
self.sim_loss_weight = sim_loss_weight
self.var_loss_weight = var_loss_weight
self.cov_loss_weight = cov_loss_weight
def forward(self, z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor:
"""Computes VICReg's loss given batch of projected features z1 from
view 1 and projected features z2 from view 2.
Args:
z1 (torch.Tensor): NxD Tensor containing proj. features from view 1.
z2 (torch.Tensor): NxD Tensor containing proj. features from view 2.
Returns:
torch.Tensor: VICReg loss.
"""
sim_loss = invariance_loss(z1, z2)
var_loss = variance_loss(z1, z2)
cov_loss = covariance_loss(z1, z2)
loss = self.sim_loss_weight * sim_loss
loss += self.var_loss_weight * var_loss
loss += self.cov_loss_weight * cov_loss
return loss