-
Notifications
You must be signed in to change notification settings - Fork 219
/
train.py
311 lines (282 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import os
from random import seed
import torch
from allennlp.data.iterators import BucketIterator
from allennlp.data.vocabulary import DEFAULT_OOV_TOKEN, DEFAULT_PADDING_TOKEN
from allennlp.data.vocabulary import Vocabulary
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from gector.bert_token_embedder import PretrainedBertEmbedder
from gector.datareader import Seq2LabelsDatasetReader
from gector.seq2labels_model import Seq2Labels
from gector.trainer import Trainer
from gector.tokenizer_indexer import PretrainedBertIndexer
from utils.helpers import get_weights_name
def fix_seed():
torch.manual_seed(1)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed(43)
def get_token_indexers(model_name, max_pieces_per_token=5, lowercase_tokens=True, special_tokens_fix=0):
bert_token_indexer = PretrainedBertIndexer(
pretrained_model=model_name,
max_pieces_per_token=max_pieces_per_token,
do_lowercase=lowercase_tokens,
special_tokens_fix=special_tokens_fix
)
return {'bert': bert_token_indexer}
def get_token_embedders(model_name, tune_bert=False, special_tokens_fix=0):
take_grads = True if tune_bert > 0 else False
bert_token_emb = PretrainedBertEmbedder(
pretrained_model=model_name,
top_layer_only=True, requires_grad=take_grads,
special_tokens_fix=special_tokens_fix)
token_embedders = {'bert': bert_token_emb}
embedder_to_indexer_map = {"bert": ["bert", "bert-offsets"]}
text_filed_emd = BasicTextFieldEmbedder(token_embedders=token_embedders,
embedder_to_indexer_map=embedder_to_indexer_map,
allow_unmatched_keys=True)
return text_filed_emd
def get_data_reader(model_name, max_len, skip_correct=False, skip_complex=0,
test_mode=False, tag_strategy="keep_one",
broken_dot_strategy="keep", lowercase_tokens=True,
max_pieces_per_token=3, tn_prob=0, tp_prob=1, special_tokens_fix=0,):
token_indexers = get_token_indexers(model_name,
max_pieces_per_token=max_pieces_per_token,
lowercase_tokens=lowercase_tokens,
special_tokens_fix=special_tokens_fix
)
reader = Seq2LabelsDatasetReader(token_indexers=token_indexers,
max_len=max_len,
skip_correct=skip_correct,
skip_complex=skip_complex,
test_mode=test_mode,
tag_strategy=tag_strategy,
broken_dot_strategy=broken_dot_strategy,
lazy=True,
tn_prob=tn_prob,
tp_prob=tp_prob)
return reader
def get_model(model_name, vocab, tune_bert=False,
predictor_dropout=0,
label_smoothing=0.0,
confidence=0,
special_tokens_fix=0):
token_embs = get_token_embedders(model_name, tune_bert=tune_bert, special_tokens_fix=special_tokens_fix)
model = Seq2Labels(vocab=vocab,
text_field_embedder=token_embs,
predictor_dropout=predictor_dropout,
label_smoothing=label_smoothing,
confidence=confidence)
return model
def main(args):
fix_seed()
if not os.path.exists(args.model_dir):
os.mkdir(args.model_dir)
weights_name = get_weights_name(args.transformer_model, args.lowercase_tokens)
# read datasets
reader = get_data_reader(weights_name, args.max_len, skip_correct=bool(args.skip_correct),
skip_complex=args.skip_complex,
test_mode=False,
tag_strategy=args.tag_strategy,
lowercase_tokens=args.lowercase_tokens,
max_pieces_per_token=args.pieces_per_token,
tn_prob=args.tn_prob,
tp_prob=args.tp_prob,
special_tokens_fix=args.special_tokens_fix)
train_data = reader.read(args.train_set)
dev_data = reader.read(args.dev_set)
default_tokens = [DEFAULT_OOV_TOKEN, DEFAULT_PADDING_TOKEN]
namespaces = ['labels', 'd_tags']
tokens_to_add = {x: default_tokens for x in namespaces}
# build vocab
if args.vocab_path:
vocab = Vocabulary.from_files(args.vocab_path)
else:
vocab = Vocabulary.from_instances(train_data,
max_vocab_size={'tokens': 30000,
'labels': args.target_vocab_size,
'd_tags': 2},
tokens_to_add=tokens_to_add)
vocab.save_to_files(os.path.join(args.model_dir, 'vocabulary'))
print("Data is loaded")
model = get_model(weights_name, vocab,
tune_bert=args.tune_bert,
predictor_dropout=args.predictor_dropout,
label_smoothing=args.label_smoothing,
special_tokens_fix=args.special_tokens_fix)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
cuda_device = list(range(torch.cuda.device_count()))
else:
cuda_device = 0
else:
cuda_device = -1
if args.pretrain:
model.load_state_dict(
torch.load(os.path.join(args.pretrain_folder, args.pretrain + '.th')),
strict=False,
)
model = model.to(device)
print("Model is set")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.1, patience=10)
instances_per_epoch = None if not args.updates_per_epoch else \
int(args.updates_per_epoch * args.batch_size * args.accumulation_size)
iterator = BucketIterator(batch_size=args.batch_size,
sorting_keys=[("tokens", "num_tokens")],
biggest_batch_first=True,
max_instances_in_memory=instances_per_epoch,
instances_per_epoch=instances_per_epoch,
)
iterator.index_with(vocab)
val_iterator = BucketIterator(batch_size=args.batch_size,
sorting_keys=[("tokens", "num_tokens")],
instances_per_epoch=None)
val_iterator.index_with(vocab)
trainer = Trainer(model=model,
optimizer=optimizer,
scheduler=scheduler,
iterator=iterator,
validation_iterator=val_iterator,
train_dataset=train_data,
validation_dataset=dev_data,
serialization_dir=args.model_dir,
patience=args.patience,
num_epochs=args.n_epoch,
cuda_device=cuda_device,
shuffle=False,
accumulated_batch_count=args.accumulation_size,
cold_step_count=args.cold_steps_count,
cold_lr=args.cold_lr,
cuda_verbose_step=int(args.cuda_verbose_steps)
if args.cuda_verbose_steps else None
)
print("Start training")
trainer.train()
# Here's how to save the model.
out_model = os.path.join(args.model_dir, 'model.th')
with open(out_model, 'wb') as f:
torch.save(model.state_dict(), f)
print("Model is dumped")
if __name__ == '__main__':
# read parameters
parser = argparse.ArgumentParser()
parser.add_argument('--train_set',
help='Path to the train data', required=True)
parser.add_argument('--dev_set',
help='Path to the dev data', required=True)
parser.add_argument('--model_dir',
help='Path to the model dir', required=True)
parser.add_argument('--vocab_path',
help='Path to the model vocabulary directory.'
'If not set then build vocab from data',
default='')
parser.add_argument('--batch_size',
type=int,
help='The size of the batch.',
default=32)
parser.add_argument('--max_len',
type=int,
help='The max sentence length'
'(all longer will be truncated)',
default=50)
parser.add_argument('--target_vocab_size',
type=int,
help='The size of target vocabularies.',
default=1000)
parser.add_argument('--n_epoch',
type=int,
help='The number of epoch for training model.',
default=20)
parser.add_argument('--patience',
type=int,
help='The number of epoch with any improvements'
' on validation set.',
default=3)
parser.add_argument('--skip_correct',
type=int,
help='If set than correct sentences will be skipped '
'by data reader.',
default=1)
parser.add_argument('--skip_complex',
type=int,
help='If set than complex corrections will be skipped '
'by data reader.',
choices=[0, 1, 2, 3, 4, 5],
default=0)
parser.add_argument('--tune_bert',
type=int,
help='If more then 0 then fine tune bert.',
default=1)
parser.add_argument('--tag_strategy',
choices=['keep_one', 'merge_all'],
help='The type of the data reader behaviour.',
default='keep_one')
parser.add_argument('--accumulation_size',
type=int,
help='How many batches do you want accumulate.',
default=4)
parser.add_argument('--lr',
type=float,
help='Set initial learning rate.',
default=1e-5)
parser.add_argument('--cold_steps_count',
type=int,
help='Whether to train only classifier layers first.',
default=4)
parser.add_argument('--cold_lr',
type=float,
help='Learning rate during cold_steps.',
default=1e-3)
parser.add_argument('--predictor_dropout',
type=float,
help='The value of dropout for predictor.',
default=0.0)
parser.add_argument('--lowercase_tokens',
type=int,
help='Whether to lowercase tokens.',
default=0)
parser.add_argument('--pieces_per_token',
type=int,
help='The max number for pieces per token.',
default=5)
parser.add_argument('--cuda_verbose_steps',
help='Number of steps after which CUDA memory information is printed. '
'Makes sense for local testing. Usually about 1000.',
default=None)
parser.add_argument('--label_smoothing',
type=float,
help='The value of parameter alpha for label smoothing.',
default=0.0)
parser.add_argument('--tn_prob',
type=float,
help='The probability to take TN from data.',
default=0)
parser.add_argument('--tp_prob',
type=float,
help='The probability to take TP from data.',
default=1)
parser.add_argument('--updates_per_epoch',
type=int,
help='If set then each epoch will contain the exact amount of updates.',
default=0)
parser.add_argument('--pretrain_folder',
help='The name of the pretrain folder.')
parser.add_argument('--pretrain',
help='The name of the pretrain weights in pretrain_folder param.',
default='')
parser.add_argument('--transformer_model',
choices=['bert', 'distilbert', 'gpt2', 'roberta', 'transformerxl', 'xlnet', 'albert',
'bert-large', 'roberta-large', 'xlnet-large'],
help='Name of the transformer model.',
default='roberta')
parser.add_argument('--special_tokens_fix',
type=int,
help='Whether to fix problem with [CLS], [SEP] tokens tokenization.',
default=1)
args = parser.parse_args()
main(args)