-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathdemo.py
124 lines (106 loc) · 4.78 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
""" Demo to show prediction results.
Author: chenxi-wang
"""
import os
import sys
import numpy as np
import open3d as o3d
import argparse
import importlib
import scipy.io as scio
from PIL import Image
import torch
from graspnetAPI import GraspGroup
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'dataset'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
from graspnet import GraspNet, pred_decode
from graspnet_dataset import GraspNetDataset
from collision_detector import ModelFreeCollisionDetector
from data_utils import CameraInfo, create_point_cloud_from_depth_image
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, help='Model checkpoint path')
parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
parser.add_argument('--num_view', type=int, default=300, help='View Number [default: 300]')
parser.add_argument('--collision_thresh', type=float, default=0.01, help='Collision Threshold in collision detection [default: 0.01]')
parser.add_argument('--voxel_size', type=float, default=0.01, help='Voxel Size to process point clouds before collision detection [default: 0.01]')
cfgs = parser.parse_args()
def get_net():
# Init the model
net = GraspNet(input_feature_dim=0, num_view=cfgs.num_view, num_angle=12, num_depth=4,
cylinder_radius=0.05, hmin=-0.02, hmax_list=[0.01,0.02,0.03,0.04], is_training=False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# Load checkpoint
checkpoint = torch.load(cfgs.checkpoint_path)
net.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch']
print("-> loaded checkpoint %s (epoch: %d)"%(cfgs.checkpoint_path, start_epoch))
# set model to eval mode
net.eval()
return net
def get_and_process_data(data_dir):
# load data
color = np.array(Image.open(os.path.join(data_dir, 'color.png')), dtype=np.float32) / 255.0
depth = np.array(Image.open(os.path.join(data_dir, 'depth.png')))
workspace_mask = np.array(Image.open(os.path.join(data_dir, 'workspace_mask.png')))
meta = scio.loadmat(os.path.join(data_dir, 'meta.mat'))
intrinsic = meta['intrinsic_matrix']
factor_depth = meta['factor_depth']
# generate cloud
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
# get valid points
mask = (workspace_mask & (depth > 0))
cloud_masked = cloud[mask]
color_masked = color[mask]
# sample points
if len(cloud_masked) >= cfgs.num_point:
idxs = np.random.choice(len(cloud_masked), cfgs.num_point, replace=False)
else:
idxs1 = np.arange(len(cloud_masked))
idxs2 = np.random.choice(len(cloud_masked), cfgs.num_point-len(cloud_masked), replace=True)
idxs = np.concatenate([idxs1, idxs2], axis=0)
cloud_sampled = cloud_masked[idxs]
color_sampled = color_masked[idxs]
# convert data
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(cloud_masked.astype(np.float32))
cloud.colors = o3d.utility.Vector3dVector(color_masked.astype(np.float32))
end_points = dict()
cloud_sampled = torch.from_numpy(cloud_sampled[np.newaxis].astype(np.float32))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cloud_sampled = cloud_sampled.to(device)
end_points['point_clouds'] = cloud_sampled
end_points['cloud_colors'] = color_sampled
return end_points, cloud
def get_grasps(net, end_points):
# Forward pass
with torch.no_grad():
end_points = net(end_points)
grasp_preds = pred_decode(end_points)
gg_array = grasp_preds[0].detach().cpu().numpy()
gg = GraspGroup(gg_array)
return gg
def collision_detection(gg, cloud):
mfcdetector = ModelFreeCollisionDetector(cloud, voxel_size=cfgs.voxel_size)
collision_mask = mfcdetector.detect(gg, approach_dist=0.05, collision_thresh=cfgs.collision_thresh)
gg = gg[~collision_mask]
return gg
def vis_grasps(gg, cloud):
gg.nms()
gg.sort_by_score()
gg = gg[:50]
grippers = gg.to_open3d_geometry_list()
o3d.visualization.draw_geometries([cloud, *grippers])
def demo(data_dir):
net = get_net()
end_points, cloud = get_and_process_data(data_dir)
gg = get_grasps(net, end_points)
if cfgs.collision_thresh > 0:
gg = collision_detection(gg, np.array(cloud.points))
vis_grasps(gg, cloud)
if __name__=='__main__':
data_dir = 'doc/example_data'
demo(data_dir)