-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathrun.py
executable file
·152 lines (118 loc) · 7.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import tensorflow as tf
import argparse
import time
import os
from model import Model
from utils import *
from sample import *
def main():
parser = argparse.ArgumentParser()
#general model params
parser.add_argument('--train', dest='train', action='store_true', help='train the model')
parser.add_argument('--sample', dest='train', action='store_false', help='sample from the model')
parser.add_argument('--rnn_size', type=int, default=100, help='size of RNN hidden state')
parser.add_argument('--tsteps', type=int, default=150, help='RNN time steps (for backprop)')
parser.add_argument('--nmixtures', type=int, default=8, help='number of gaussian mixtures')
# window params
parser.add_argument('--kmixtures', type=int, default=1, help='number of gaussian mixtures for character window')
parser.add_argument('--alphabet', type=str, default=' abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', \
help='default is a-z, A-Z, space, and <UNK> tag')
parser.add_argument('--tsteps_per_ascii', type=int, default=25, help='expected number of pen points per character')
# training params
parser.add_argument('--batch_size', type=int, default=32, help='batch size for each gradient step')
parser.add_argument('--nbatches', type=int, default=500, help='number of batches per epoch')
parser.add_argument('--nepochs', type=int, default=250, help='number of epochs')
parser.add_argument('--dropout', type=float, default=0.85, help='probability of keeping neuron during dropout')
parser.add_argument('--grad_clip', type=float, default=10., help='clip gradients to this magnitude')
parser.add_argument('--optimizer', type=str, default='rmsprop', help="ctype of optimizer: 'rmsprop' 'adam'")
parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('--lr_decay', type=float, default=1.0, help='decay rate for learning rate')
parser.add_argument('--decay', type=float, default=0.95, help='decay rate for rmsprop')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for rmsprop')
#book-keeping
parser.add_argument('--data_scale', type=int, default=50, help='amount to scale data down before training')
parser.add_argument('--log_dir', type=str, default='./logs/', help='location, relative to execution, of log files')
parser.add_argument('--data_dir', type=str, default='./data', help='location, relative to execution, of data')
parser.add_argument('--save_path', type=str, default='saved/model.ckpt', help='location to save model')
parser.add_argument('--save_every', type=int, default=500, help='number of batches between each save')
#sampling
parser.add_argument('--text', type=str, default='', help='string for sampling model (defaults to test cases)')
parser.add_argument('--style', type=int, default=-1, help='optionally condition model on a preset style (using data in styles.p)')
parser.add_argument('--bias', type=float, default=1.0, help='higher bias means neater, lower means more diverse (range is 0-5)')
parser.add_argument('--sleep_time', type=int, default=60*5, help='time to sleep between running sampler')
parser.set_defaults(train=True)
args = parser.parse_args()
train_model(args) if args.train else sample_model(args)
def train_model(args):
logger = Logger(args) # make logging utility
logger.write("\nTRAINING MODE...")
logger.write("{}\n".format(args))
logger.write("loading data...")
data_loader = DataLoader(args, logger=logger)
logger.write("building model...")
model = Model(args, logger=logger)
logger.write("attempt to load saved model...")
load_was_success, global_step = model.try_load_model(args.save_path)
v_x, v_y, v_s, v_c = data_loader.validation_data()
valid_inputs = {model.input_data: v_x, model.target_data: v_y, model.char_seq: v_c}
logger.write("training...")
model.sess.run(tf.assign(model.decay, args.decay ))
model.sess.run(tf.assign(model.momentum, args.momentum ))
running_average = 0.0 ; remember_rate = 0.99
for e in range(global_step/args.nbatches, args.nepochs):
model.sess.run(tf.assign(model.learning_rate, args.learning_rate * (args.lr_decay ** e)))
logger.write("learning rate: {}".format(model.learning_rate.eval()))
c0, c1, c2 = model.istate_cell0.c.eval(), model.istate_cell1.c.eval(), model.istate_cell2.c.eval()
h0, h1, h2 = model.istate_cell0.h.eval(), model.istate_cell1.h.eval(), model.istate_cell2.h.eval()
kappa = np.zeros((args.batch_size, args.kmixtures, 1))
for b in range(global_step%args.nbatches, args.nbatches):
i = e * args.nbatches + b
if global_step is not 0 : i+=1 ; global_step = 0
if i % args.save_every == 0 and (i > 0):
model.saver.save(model.sess, args.save_path, global_step = i) ; logger.write('SAVED MODEL')
start = time.time()
x, y, s, c = data_loader.next_batch()
feed = {model.input_data: x, model.target_data: y, model.char_seq: c, model.init_kappa: kappa, \
model.istate_cell0.c: c0, model.istate_cell1.c: c1, model.istate_cell2.c: c2, \
model.istate_cell0.h: h0, model.istate_cell1.h: h1, model.istate_cell2.h: h2}
[train_loss, _] = model.sess.run([model.cost, model.train_op], feed)
feed.update(valid_inputs)
feed[model.init_kappa] = np.zeros((args.batch_size, args.kmixtures, 1))
[valid_loss] = model.sess.run([model.cost], feed)
running_average = running_average*remember_rate + train_loss*(1-remember_rate)
end = time.time()
if i % 10 is 0: logger.write("{}/{}, loss = {:.3f}, regloss = {:.5f}, valid_loss = {:.3f}, time = {:.3f}" \
.format(i, args.nepochs * args.nbatches, train_loss, running_average, valid_loss, end - start) )
def sample_model(args, logger=None):
if args.text == '':
strings = ['call me ishmael some years ago', 'A project by Sam Greydanus', 'mmm mmm mmm mmm mmm mmm mmm', \
'What I cannot create I do not understand', 'You know nothing Jon Snow'] # test strings
else:
strings = [args.text]
logger = Logger(args) if logger is None else logger # instantiate logger, if None
logger.write("\nSAMPLING MODE...")
logger.write("loading data...")
logger.write("building model...")
model = Model(args, logger)
logger.write("attempt to load saved model...")
load_was_success, global_step = model.try_load_model(args.save_path)
if load_was_success:
for s in strings:
strokes, phis, windows, kappas = sample(s, model, args)
w_save_path = '{}figures/iter-{}-w-{}'.format(args.log_dir, global_step, s[:10].replace(' ', '_'))
g_save_path = '{}figures/iter-{}-g-{}'.format(args.log_dir, global_step, s[:10].replace(' ', '_'))
l_save_path = '{}figures/iter-{}-l-{}'.format(args.log_dir, global_step, s[:10].replace(' ', '_'))
window_plots(phis, windows, save_path=w_save_path)
gauss_plot(strokes, 'Heatmap for "{}"'.format(s), figsize = (2*len(s),4), save_path=g_save_path)
line_plot(strokes, 'Line plot for "{}"'.format(s), figsize = (len(s),2), save_path=l_save_path)
# make sure that kappas are reasonable
logger.write( "kappas: \n{}".format(str(kappas[min(kappas.shape[0]-1, args.tsteps_per_ascii),:])) )
else:
logger.write("load failed, sampling canceled")
if True:
tf.reset_default_graph()
time.sleep(args.sleep_time)
sample_model(args, logger=logger)
if __name__ == '__main__':
main()