-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathIntroduction.html
615 lines (542 loc) · 28.5 KB
/
Introduction.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Introduction</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/sandstone.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/accessible-code-block-0.0.1/empty-anchor.js"></script>
<link href="site_libs/anchor-sections-1.0/anchor-sections.css" rel="stylesheet" />
<script src="site_libs/anchor-sections-1.0/anchor-sections.js"></script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-3"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-3');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 61px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 66px;
margin-top: -66px;
}
.section h2 {
padding-top: 66px;
margin-top: -66px;
}
.section h3 {
padding-top: 66px;
margin-top: -66px;
}
.section h4 {
padding-top: 66px;
margin-top: -66px;
}
.section h5 {
padding-top: 66px;
margin-top: -66px;
}
.section h6 {
padding-top: 66px;
margin-top: -66px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Population genetics and genomics in R</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="TOC.html">Table of contents</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part I
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Introduction.html">Introduction</a>
</li>
<li>
<a href="Getting_ready_to_use_R.html">Getting ready to use R</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part II
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Data_Preparation.html">Data preparation</a>
</li>
<li>
<a href="First_Steps.html">First steps</a>
</li>
<li>
<a href="Population_Strata.html">Population strata and clone correction</a>
</li>
<li>
<a href="Locus_Stats.html">Locus-based statistics and missing data</a>
</li>
<li>
<a href="Genotypic_EvenRichDiv.html">Genotypic evenness, richness, and diversity</a>
</li>
<li>
<a href="Linkage_disequilibrium.html">Linkage disequilibrium</a>
</li>
<li>
<a href="Pop_Structure.html">Population structure</a>
</li>
<li>
<a href="Minimum_Spanning_Networks.html">Minimum Spanning Networks</a>
</li>
<li>
<a href="AMOVA.html">AMOVA</a>
</li>
<li>
<a href="DAPC.html">Discriminant analysis of principal components (DAPC)</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part III
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_vcf.html">Population genomics and HTS</a>
</li>
<li>
<a href="reading_vcf.html">Reading VCF data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genomic data</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="clustering_plot.html">Clustering plot</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Workshops
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">ICPP</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_icpp.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genome data</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">APS Southern Division</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_southernAPS.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
About
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Authors.html">Authors</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Appendices
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_to_R.html">Introduction to R</a>
</li>
<li>
<a href="Data_sets.html">Data sets</a>
</li>
<li>
<a href="funpendix.html">Function glossary</a>
</li>
<li>
<a href="background_functions.html">Background_functions</a>
</li>
<li>
<a href="https://github.com/grunwaldlab/Population_Genetics_in_R/">Source Code</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Introduction</h1>
<h3 class="subtitle"><em>NJ Grünwald, ZN Kamvar and SE Everhart</em></h3>
</div>
<p>This primer provides a concise introduction to conducting applied analyses of population genetic data in R, with a special emphasis on non-model populations including clonal or partially clonal organisms. It is not meant to be a textbook on population genetics. Quite to the contrary, we refer the reader to several textbooks on population genetics <span class="citation">(Templeton, 2006; Hartl & Clark, 2007; Nielsen & Slatkin, 2013)</span>. Likewise, this book will not replace books on theory and statistics of population genetics <span class="citation">(Weir, 1996)</span>. The reader is thus expected to have a basic understanding of population genetic theory and applications. Finally, this primer is focused on traditional population genetics based on allele frequencies, rather than more sophisticated coalescent approaches <span class="citation">(Hein, Schierup & Wiuf, 2004; Wakeley, 2009; Nielsen & Slatkin, 2013)</span>, although some of the material covered here will apply. In a nutshell, this primer provides a valuable resource for tackling the nitty-gritty analysis of populations that do not necessarily conform to textbook genetics and might or might not be in Hardy-Weinberg equilibrium and panmixia.</p>
<p>This primer is geared towards biologists interested in analyzing their populations. This primer does not require extensive knowledge of programming in R, but the user is expected to install R and all packages required for this primer.</p>
<div id="why-use-r" class="section level2">
<h2>Why use R?</h2>
<p>Until recently, one of the more tedious aspects of conducting a population genetic analysis was the need for repeated reformatting data to conduct different, complimentary analyses in different programs. Often, these programs only ran on one platform. Now, R provides a toolbox with its packages that allows analysis of most data conveniently without tedious reformatting on all major computing platforms including Microsoft Windows, Linux, and Apple’s OS X. R is an open source statistical programming and graphing language that includes tools for statistical, population genetic, genomic, phylogenetic, and comparative genomic analyses. This primer is for those of us that want to conduct applied analyses of populations and make full use of the palette of tools available in R including for example the R markdown code for this primer.</p>
<p>Note that the R user community is very active and that both R and its packages are regularly updated, critically modified, and noted as deprecated (no longer updated) as appropriate.</p>
<blockquote>
<p>Any R user needs to make sure all components are up-to-date and that versions are compatible.</p>
</blockquote>
</div>
<div id="population-genetics" class="section level2">
<h2>Population genetics</h2>
<p>Traditional population genetics is based on analysis of observed allele frequencies compared to frequencies expected, assuming a population genetic model. For example, under a <strong>Wright-Fisher model</strong> you might expect to see populations of diploid individuals that reproduce sexually, with non-overlapping generations. This model ignores effects such as mutation, recombination, selection or changes in population size or structure. More complex models can incorporate different aspects of effects observed in real populations. However, most of these models assume that populations reproduce sexually.</p>
<p>Here, we briefly review some terminology but assume that the reader has a basic understanding of theory and applications of population genetics.</p>
<p>A <strong>locus</strong> is a position in the genome where we can observe one or several alleles in different individuals. Loci used in population genetics are assumed to be selectively neutral and can be an anonymous or non-coding region such as a microsatellite locus (SSR), a single nucleotide polymorphism (SNP) or the presence/absence of a band on a gel. A <strong>genotype</strong> is the combination of alleles carried by a given individual at a particular set of loci. Individuals carrying the same set of alleles are considered to have the same <strong>multilocus genotype</strong> <span class="math inline">\(MLG\)</span>.</p>
<p>Basic metrics of interest in populations are polymorphisms, allele frequencies and genotype frequencies. Polymorphism can be estimated in several ways, such as the total number of loci observed that have more than one allele. The frequency of an allele is calculated as the number of allele copies observed in a population divided by the total number of individuals, times the ploidy (<span class="math inline">\(N\)</span> in haploids or <span class="math inline">\(2N\)</span> in diploids) in the population. For diploids we would observe frequency <span class="math inline">\(f_{A}\)</span> and <span class="math inline">\(f_{a}\)</span> for alleles <span class="math inline">\(A\)</span> and <span class="math inline">\(a\)</span>, respectively:</p>
<p><span class="math inline">\(f_{A} = \frac{N_{A}}{2N}\)</span> and <span class="math inline">\(f_{a} = \frac{N_{a}}{2N}\)</span></p>
<p>where <span class="math inline">\(N_{A}\)</span> are the numbers of allele <span class="math inline">\(A\)</span> segregating in the population genotyped.</p>
<p>By definition, at a biallelic locus frequencies sum to 1:</p>
<p><span class="math inline">\(f_{A} + f_{a} = 1\)</span>.</p>
<p>Genotype frequencies are the relative frequencies of each <span class="math inline">\(MLG\)</span> observed in a population. Thus, for diploids at a <strong>biallelic locus</strong> we can observe three genotypes: <span class="math inline">\(AA\)</span>, <span class="math inline">\(Aa\)</span>, and <span class="math inline">\(aa\)</span> and their respective frequencies:</p>
<p><span class="math inline">\(f_{AA} = \frac{N_{AA}}{2N}\)</span> and <span class="math inline">\(f_{Aa} = \frac{N_{Aa}}{2N}\)</span> and <span class="math inline">\(f_{aa} = \frac{N_{aa}}{2N}\)</span></p>
<p>These frequencies again add up to 1. In diploid organisms we can also calculate the frequency of <strong>homozygotes</strong> (<span class="math inline">\(AA\)</span> or <span class="math inline">\(aa\)</span>) or <strong>heterozygotes</strong> (<span class="math inline">\(Aa\)</span>) as the proportion of individuals falling into each class. The proportion of individuals that are heterozygous is given by <span class="math inline">\(f_{Aa}\)</span> while the homozygous proportion is given by <span class="math inline">\(1-f_{Aa} = f_{AA}+f_{aa}\)</span>.</p>
<p>An important aspect of population structure is the heterozygosity observed within subdivided populations <span class="math inline">\(H_{S}\)</span> and across total populations <span class="math inline">\(H_{T}\)</span>. If we assume presence of two populations in Hardy-Weinberg equilibrium then frequencies of Allele <span class="math inline">\(A\)</span> in populations 1 and 2 pooled over both populations would be:</p>
<p><span class="math inline">\(f_{A} = \frac{2N_{1}f_{A1} + 2N_{2}f_{A2}}{2N_{1} + 2N_{2}}\)</span></p>
<p>where each allele frequency is multiplied by population size <span class="math inline">\(N_{1}\)</span> and <span class="math inline">\(N_{2}\)</span> and divided by total number of alleles <span class="math inline">\(2N_{1} + 2N_{2}\)</span>. Remember, that in a diploid population there are 2 alleles per locus per individual and hence every frequency is multiplied by 2.</p>
<p>Genetic differentiation of two populations (e.g. subdivision of populations) occurs if we observe differences in polymorphism, allele frequencies, genotype frequencies, and heterozygosity. Wright’s <span class="math inline">\(F_{st}\)</span> is a commonly used measure of differences in heterozygosity observed in the overall population relative to the subdivided populations and is defined as the differences between <span class="math inline">\(H_{T}\)</span> and <span class="math inline">\(H_{S}\)</span> relative to <span class="math inline">\(H_{T}\)</span>:</p>
<p><span class="math inline">\(F_{ST} = \frac{H_{T}-H_{S}}{H_{T}}\)</span></p>
<p>If allele frequencies are identical in both subpopulations then <span class="math inline">\(H_{T} = H_{S}\)</span>. If, on the other hand, allele frequencies vary between subdivided populations, then <span class="math inline">\(H_{T} > H_{S}\)</span> and populations are considered to be genetically differentiated.</p>
<p>Besides calculation of <span class="math inline">\(F_{st}\)</span> other approaches can be used to assess population structure including clustering. These approaches will be explored in subsequent chapters.</p>
</div>
<div id="the-special-case-of-clonal-organisms" class="section level2">
<h2>The special case of clonal organisms</h2>
<p>Plants and microorganisms such as fungi, oomycetes, and bacteria often reproduce clonally or follow a mixed reproductive system, including various degrees of clonality and sexuality <span class="citation">(Halkett, Simon & Balloux, 2005)</span>. Traditional population genetic theory does not apply and these populations violate basic assumptions in the corresponding analyses. Thus, a different set of tools are required for analyses of clonal populations <span class="citation">(Anderson & Kohn, 1995; Milgroom, 1996; Balloux, Lehmann & Meeûs, 2003; Halkett et al., 2005; De Meeûs, Lehmann & Balloux, 2006; Grünwald & Goss, 2011)</span>. Typically these focus on metrics that are model free and do not assume random mating or random sampling of alleles. Model free metrics suitable for analyzing these populations include measures of genotypic diversity or evenness, as well as cluster analysis based on genetic distance. Additional useful measures include indices of linkage disequiblibrium among markers that are used to infer if populations are reproducing sexually or clonally. We will explore these analyses bit by bit throughout this primer. The <em>poppr</em> R package was specifically developed to facilitate analyses of clonal populations <span class="citation">(Kamvar, Tabima & Grünwald, 2014; Kamvar, Brooks & Grünwald, 2015)</span>.</p>
</div>
<div id="marker-systems-ploidy-and-other-kinds-of-data" class="section level2">
<h2>Marker systems, ploidy and other kinds of data</h2>
<p>Population genetic data come in many shapes and forms and a good analysis needs to be tailored to the marker system, ploidy used and corresponding genetic models assumed <span class="citation">(Grünwald & Goss, 2011)</span>. Organisms can be haploid, diploid, with or without known phase, or polyploid. In the case of diploid species, marker systems can be dominant (AFLP, RFLP or RAPD data) or co- dominant (SSR, SNPs, allozymes) <span class="citation">(Grünwald et al., 2003)</span>. A locus can have two alleles (0/1 for AFLP; C/T for SNPs) or many alleles per locus (A/B/C…N for SSRs or allozymes). In each case the data has to be coded and analyzed differently. Mutation rates can also differ for different markers systems (SSR >> mitochondrial SNPs > nuclear SNPs) <span class="citation">(Grünwald & Goss, 2011)</span>. All these aspects of a particular data set need to be considered in the data analyses.</p>
</div>
<div id="applications-of-population-genetic-analyses" class="section level2">
<h2>Applications of population genetic analyses</h2>
<p>Population genetic analyses are tremendously valuable for answering questions ranging from applied to basic evolutionary questions <span class="citation">(Grünwald & Goss, 2011)</span>. For example, a typical concern when finding a new, invasive organism is whether it is introduced to the area or emerged from a resident population. Other questions of interest might include:</p>
<ul>
<li>Where is the center of origin?</li>
<li>Does this organism reproduce sexually?</li>
<li>Has the population gone through a genetic bottleneck?</li>
<li>Are populations structured by region, geography, micro-environment?</li>
<li>What are source and sink populations and what are the rates of migration?</li>
</ul>
<p>This primer will provide some of the basic tools needed to answer many of these questions for populations that are clonal or partially clonal. Note, however, that more powerful, complementary coalescent methods will not be covered here. We hope you enjoy following along.</p>
</div>
<div id="references" class="section level2">
<h2>References</h2>
<!--- ref --->
<div id="refs" class="references">
<div id="ref-anderson1995clonality">
<p>Anderson JB., Kohn LM. 1995. Clonality in soilborne, plant-pathogenic fungi. <em>Annual Review of Phytopathology</em> 33:369–391. Available at: <a href="http://www.annualreviews.org/doi/abs/10.1146/annurev.py.33.090195.002101">http://www.annualreviews.org/doi/abs/10.1146/annurev.py.33.090195.002101</a></p>
</div>
<div id="ref-balloux2003population">
<p>Balloux F., Lehmann L., Meeûs T de. 2003. The population genetics of clonal and partially clonal diploids. <em>Genetics</em> 164:1635–1644. Available at: <a href="http://www.genetics.org/content/164/4/1635.full">http://www.genetics.org/content/164/4/1635.full</a></p>
</div>
<div id="ref-de2006molecular">
<p>De Meeûs T., Lehmann L., Balloux F. 2006. Molecular epidemiology of clonal diploids: A quick overview and a short diy (do it yourself) notice. <em>Infection, Genetics and Evolution</em> 6:163–170. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16290062">http://www.ncbi.nlm.nih.gov/pubmed/16290062</a></p>
</div>
<div id="ref-grunwald2003">
<p>Grünwald NJ., Goodwin SB., Milgroom MG., Fry WE. 2003. Analysis of genotypic diversity data for populations of microorganisms. <em>Phytopathology</em> 93:738–746. Available at: <a href="http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.2003.93.6.738">http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.2003.93.6.738</a></p>
</div>
<div id="ref-grunwald2011evolution">
<p>Grünwald NJ., Goss EM. 2011. Evolution and population genetics of exotic and re-emerging pathogens: Novel tools and approaches. <em>Annual Review of Phytopathology</em> 49:249–267. Available at: <a href="http://www.annualreviews.org/doi/abs/10.1146/annurev-phyto-072910-095246?journalCode=phyto">http://www.annualreviews.org/doi/abs/10.1146/annurev-phyto-072910-095246?journalCode=phyto</a></p>
</div>
<div id="ref-halkett2005tackling">
<p>Halkett F., Simon J-C., Balloux F. 2005. Tackling the population genetics of clonal and partially clonal organisms. <em>Trends in Ecology & Evolution</em> 20:194–201. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16701368">http://www.ncbi.nlm.nih.gov/pubmed/16701368</a></p>
</div>
<div id="ref-hartl2007">
<p>Hartl D., Clark A. 2007. <em>Principles of population genetics</em>. Sinauer Associates, Incorporated. Available at: <a href="http://books.google.com/books?id=SB1vQgAACAAJ">http://books.google.com/books?id=SB1vQgAACAAJ</a></p>
</div>
<div id="ref-hein2004">
<p>Hein J., Schierup M., Wiuf C. 2004. <em>Gene genealogies, variation and evolution: A primer in coalescent theory</em>. Oxford University Press, USA. Available at: <a href="http://books.google.com/books?id=QBC\_SFOamksC">http://books.google.com/books?id=QBC\_SFOamksC</a></p>
</div>
<div id="ref-kamvar2015novel">
<p>Kamvar ZN., Brooks JC., Grünwald NJ. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. <em>Name: Frontiers in Genetics</em> 6:208. Available at: <a href="http://dx.doi.org/10.3389/fgene.2015.00208">http://dx.doi.org/10.3389/fgene.2015.00208</a></p>
</div>
<div id="ref-kamvar2014poppr">
<p>Kamvar ZN., Tabima JF., Grünwald NJ. 2014. <span class="math inline">\(Poppr\)</span>: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. <em>PeerJ</em> 2:e281. Available at: <a href="http://dx.doi.org/10.7717/peerj.281">http://dx.doi.org/10.7717/peerj.281</a></p>
</div>
<div id="ref-milgroom1996recombination">
<p>Milgroom MG. 1996. Recombination and the multilocus structure of fungal populations. <em>Annual Review of Phytopathology</em> 34:457–477. Available at: <a href="http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.34.1.457">http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.34.1.457</a></p>
</div>
<div id="ref-nielsen2013">
<p>Nielsen R., Slatkin M. 2013. <em>An introduction to population genetics: Theory and applications</em>. Sinauer Associates, Incorporated. Available at: <a href="http://books.google.com/books?id=Iy08kgEACAAJ">http://books.google.com/books?id=Iy08kgEACAAJ</a></p>
</div>
<div id="ref-templeton2006">
<p>Templeton A. 2006. <em>Population genetics and microevolutionary theory</em>. Wiley. Available at: <a href="http://books.google.com/books?id=tJVreQjInt0C">http://books.google.com/books?id=tJVreQjInt0C</a></p>
</div>
<div id="ref-wakeley2009">
<p>Wakeley J. 2009. <em>Coalescent theory: An introduction</em>. Roberts & Company Publishers. Available at: <a href="http://books.google.com/books?id=x30RAgAACAAJ">http://books.google.com/books?id=x30RAgAACAAJ</a></p>
</div>
<div id="ref-weir1996">
<p>Weir B. 1996. <em>Genetic data analysis 2</em>. Sinauer Associates. Available at: <a href="http://books.google.com/books?id=e9QPAQAAMAAJ">http://books.google.com/books?id=e9QPAQAAMAAJ</a></p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>