-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathborderconvparameters.py
199 lines (172 loc) · 9.85 KB
/
borderconvparameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Implements convolutional 2D parameters for RBMs, with border padding.
#
# Copyright (c) 2016 Gijs van Tulder / Erasmus MC, the Netherlands
# This code is licensed under the MIT license. See LICENSE for details.
from morb.base import Parameters
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
# from morb.misc import tensordot # better tensordot implementation that can be GPU accelerated
tensordot = T.tensordot # use theano implementation
class Convolutional2DParameters(Parameters):
def __init__(self, rbm, units_list, W, shape_info=None, name=None, energy_multiplier=1, var_fixed_border=None, shared_hidden_dims=0, divide_by_number_of_hiddens=False, alternative_gradient=False):
# use the shape_info parameter to provide a dict with keys:
# hidden_maps, visible_maps, filter_height, filter_width, visible_height, visible_width, mb_size
super(Convolutional2DParameters, self).__init__(rbm, units_list, name=name, energy_multiplier = energy_multiplier)
assert len(units_list) == 2
self.var = W # (hidden_maps, visible_maps, filter_height, filter_width)
self.variables = [self.var]
self.vu = units_list[0] # (mb_size, visible_maps, visible_height, visible_width)
self.hu = units_list[1] # (mb_size, hidden_maps, hidden_height, hidden_width)
self.shape_info = shape_info
self.alternative_gradient = alternative_gradient
if var_fixed_border:
self.borders_zero = False
self.margin = shape_info['filter_height'] - 1
self.var_fixed_border = var_fixed_border # (mb_size, visible_maps, visible_height + 2 * margin, visible_width + 2 * margin)
else:
self.borders_zero = True
if not shared_hidden_dims in (0,1):
raise "shared_hidden_dims is not 0 or 1"
# conv input is (output_maps, input_maps, filter height [numrows], filter width [numcolumns])
# conv input is (mb_size, input_maps, input height [numrows], input width [numcolumns])
# conv output is (mb_size, output_maps, output height [numrows], output width [numcolumns])
def term_vu(vmap, pmap):
# input = hiddens, output = visibles so we need to swap dimensions
W_shuffled = pmap[self.var].dimshuffle(1, 0, 2, 3)
if self.filter_shape is not None:
shuffled_filter_shape = [self.filter_shape[k] for k in (1, 0, 2, 3)]
else:
shuffled_filter_shape = None
# sum over bias dimension, if necessary
hu_for_v = vmap[self.hu]
if shared_hidden_dims == 1:
# from (mb_size, hidden_maps, bias_sets, hidden_height, hidden_width)
# to (mb_size, hidden_maps, hidden_height, hidden_width)
hu_for_v = T.sum(hu_for_v, axis=2)
# (this requires a flipped convolution; conv2d does that)
if self.borders_zero:
# the visible units do not include margins
return conv.conv2d(hu_for_v, W_shuffled, border_mode='full', \
image_shape=self.hidden_shape, filter_shape=shuffled_filter_shape)
else:
# ignore the visible unit borders
return conv.conv2d(hu_for_v, W_shuffled, border_mode='valid', \
image_shape=self.hidden_shape, filter_shape=shuffled_filter_shape)
def term_hu(vmap, pmap):
# input = visibles, output = hiddens, flip filters
# (flip because conv2d flips the kernel a second time)
W_flipped = pmap[self.var][:, :, ::-1, ::-1]
if self.borders_zero:
c = conv.conv2d(vmap[self.vu], W_flipped, border_mode='valid', \
image_shape=self.visible_shape, filter_shape=self.filter_shape)
else:
v_with_borders = self.add_fixed_borders(vmap[self.vu], vmap)
c = conv.conv2d(v_with_borders, W_flipped, border_mode='valid', \
image_shape=self.visible_shape_with_border, filter_shape=self.filter_shape)
if shared_hidden_dims == 1:
# share over biases
# (mb_size, hidden_maps, biases, hidden_height, hidden_width)
c = c.dimshuffle(0, 1, 'x', 2, 3)
return c
self.terms[self.vu] = term_vu
self.terms[self.hu] = term_hu
def gradient(vmap, pmap):
raise NotImplementedError # TODO
def gradient_sum(vmap, pmap):
if self.visible_shape is not None:
if self.alternative_gradient or self.borders_zero:
i_shape = [self.visible_shape[k] for k in [1, 0, 2, 3]]
else:
i_shape = [self.visible_shape_with_border[k] for k in [1, 0, 2, 3]]
else:
i_shape = None
if self.hidden_shape is not None:
f_shape = [self.hidden_shape[k] for k in [1, 0, 2, 3]]
else:
f_shape = None
if self.alternative_gradient or self.borders_zero:
v_shuffled = vmap[self.vu].dimshuffle(1, 0, 2, 3)
else:
v_shuffled = self.add_fixed_borders(vmap[self.vu], vmap).dimshuffle(1, 0, 2, 3)
# sum over bias dimension, if necessary
hu_for_v = vmap[self.hu]
if shared_hidden_dims == 1:
# from (mb_size, hidden_maps, bias_sets, hidden_height, hidden_width)
# to (mb_size, hidden_maps, hidden_height, hidden_width)
hu_for_v = T.sum(hu_for_v, axis=2)
h_shuffled = hu_for_v.dimshuffle(1, 0, 2, 3)
# (flip because conv2d flips the kernel a second time)
if self.alternative_gradient:
v_shuffled = v_shuffled[:, :, ::-1, ::-1]
c = conv.conv2d(h_shuffled, v_shuffled, border_mode='valid', image_shape=f_shape, filter_shape=i_shape)
c = c[:, :, ::-1, ::-1]
else:
h_shuffled = h_shuffled[:, :, ::-1, ::-1]
c = conv.conv2d(v_shuffled, h_shuffled, border_mode='valid', image_shape=i_shape, filter_shape=f_shape)
c = c.dimshuffle(1, 0, 2, 3)
# must use the mean over all hidden nodes
# ( = the size of the feature maps )
# (see, e.g., Lee et al., 2012:
# "Unsupervised Learning of Hierarchical Representations
# with Convolutional Deep Belief Networks")
#
# (2013.08.02: I now think this is not correct.)
# number_of_hiddens = 1 # self.hidden_shape[2] * self.hidden_shape[3] * self.visible_shape[1]
# return c.dimshuffle(1, 0, 2, 3) / number_of_hiddens
if divide_by_number_of_hiddens:
number_of_hiddens = self.hidden_shape[2] * self.hidden_shape[3]
# print "Number of hiddens: %d", number_of_hiddens
return c / number_of_hiddens
return self.energy_multiplier * c
return theano.printing.Print("BorderConvGradientSum")(self.energy_multiplier)
self.energy_gradients[self.var] = gradient
self.energy_gradient_sums[self.var] = gradient_sum
@property
def filter_shape(self):
keys = ['hidden_maps', 'visible_maps', 'filter_height', 'filter_width']
if self.shape_info is not None and all(k in self.shape_info for k in keys):
return tuple(self.shape_info[k] for k in keys)
else:
return None
@property
def visible_shape(self):
keys = ['mb_size', 'visible_maps', 'visible_height', 'visible_width']
if self.shape_info is not None and all(k in self.shape_info for k in keys):
return tuple(self.shape_info[k] for k in keys)
else:
return None
@property
def visible_shape_with_border(self):
keys = ['mb_size', 'visible_maps', 'visible_height', 'visible_width']
if self.shape_info is not None and all(k in self.shape_info for k in keys):
s = [self.shape_info[k] for k in keys]
if not self.borders_zero:
s[2] += 2 * self.margin
s[3] += 2 * self.margin
return tuple(s)
else:
return None
@property
def hidden_shape(self):
keys = ['mb_size', 'hidden_maps', 'visible_height', 'visible_width']
if self.shape_info is not None and all(k in self.shape_info for k in keys):
if not self.borders_zero:
hidden_height = self.shape_info['visible_height'] + (2 * self.margin) - self.shape_info['filter_height'] + 1
hidden_width = self.shape_info['visible_width'] + (2 * self.margin) - self.shape_info['filter_width'] + 1
else:
hidden_height = self.shape_info['visible_height'] - self.shape_info['filter_height'] + 1
hidden_width = self.shape_info['visible_width'] - self.shape_info['filter_width'] + 1
return (self.shape_info['mb_size'], self.shape_info['hidden_maps'], hidden_height, hidden_width)
else:
return None
def energy_term(self, vmap, pmap):
q = self.terms[self.hu](vmap, pmap) * vmap[self.hu]
return - self.energy_multiplier * T.sum(q, axis=range(1, q.ndim))
# sum over all but the minibatch axis
def add_fixed_borders(self, s_var, vmap):
# load fixed borders
s = vmap[self.var_fixed_border]
return T.set_subtensor(s[:, :, self.margin:(self.margin + self.shape_info['visible_height']), self.margin:(self.margin + self.shape_info['visible_width'])], s_var)
def remove_fixed_borders(self, s_var):
return s_var[:, :, self.margin:(self.margin + self.shape_info['visible_height']), self.margin:(self.margin + self.shape_info['visible_width'])]