-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate-recipes.rb
65 lines (59 loc) · 2.54 KB
/
generate-recipes.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Generates a list of commands to train RBMs, with different parameters
# and training sets.
#
# Copyright (c) 2016 Gijs van Tulder / Erasmus MC, the Netherlands
# This code is licensed under the MIT license. See LICENSE for details.
# somewhat balanced folds
folds = [
[35, 78, 83, 94, 101, 120, 134, 135, 149, 157, 159, 167, 169, 171, 172],
[7, 47, 65, 74, 77, 82, 89, 92, 105, 138, 155, 158, 175, 182, 183],
[3, 23, 39, 56, 62, 76, 107, 112, 118, 126, 131, 147, 153, 160, 180],
[17, 19, 45, 48, 51, 84, 109, 122, 127, 132, 136, 140, 152, 185],
[36, 37, 80, 81, 90, 116, 121, 124, 143, 144, 163, 164, 166, 168]
]
fold_file_lists = folds.map do |fold|
fold.map do |scan_id|
"ILD-cells/#{ scan_id }.mat"
end.join(",")
end
folds.size.times do |test_fold|
train_scans = []
test_scans = []
fold_file_lists.each_with_index do |fold_file_list, fold|
if fold == test_fold
test_scans << fold_file_list
else
train_scans << fold_file_list
end
end
train_scans = train_scans.join(",")
test_scans = test_scans.join(",")
exp = []
[ 5, 8, 10 ].each do |filter_size|
[ 4, 16, 25, 36 ].each do |filter_count|
File.open("recipes/conv-#{ filter_size }x#{ filter_size }x#{ filter_count }", "a") do |f|
[ "--ignore-labels",
"--beta 1.0",
"--beta 0.001",
"--beta 0.01",
"--beta 0.1",
"--beta 0.2",
"--beta 0" ].each do |beta|
%w{ 0.000001 }.each do |w_init|
%w{ 0.001 0.00001 0.0000001 0.00000001 0.000000001 }.each do |learning_rate|
if test_fold > 0
seed = 123 + 2 * test_fold
seed = "--rng-seed #{ seed } "
else
seed = ""
end
experiment_id = "exp-testfold#{ test_fold }-normPATCH-conv-#{ filter_size }x#{ filter_size }x#{ filter_count }-beta#{ beta.gsub(/[^.0-9]+/,"") }-winit#{ w_init }-lrate#{ learning_rate }"
f.puts "python -u exp_train_rbm.py --epochs 1001 --learning-rate #{ learning_rate } --filter-height #{ filter_size } --filter-width #{ filter_size } --image-size 32 --hidden-maps #{ filter_count } #{ beta } --beta-decay 1 --k-eval 1 --mb-size 5 --n-states 5 #{ seed }--train-scans #{ train_scans } --test-scans #{ test_scans } --convolution-type full --weight-w-init-std #{ w_init } --weight-u-init-std #{ w_init } --evaluate-every 100 --plot-every 100 --test-every 100 --experiment-id #{ experiment_id }"
# removed: --global-normalisation
end
end
end
end
end
end
end