-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
103 lines (72 loc) · 2.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Utility functions.
#
# Copyright (c) 2016 Gijs van Tulder / Erasmus MC, the Netherlands
# This code is licensed under the MIT license. See LICENSE for details.
import numpy as np
import matplotlib.pyplot as plt
def generate_data(N):
"""Creates a noisy dataset with some simple pattern in it."""
T = N * 38
u = np.mat(np.zeros((T, 20)))
for i in range(1, T, 38):
if i % 76 == 1:
u[i - 1:i + 19, :] = np.eye(20)
u[i + 18:i + 38, :] = np.eye(20)[np.arange(19, -1, -1)]
u[i - 1:i + 19, :] += np.eye(20)[np.arange(19, -1, -1)]
else:
u[i - 1:i + 19, 1] = 1
u[i + 18:i + 38, 8] = 1
return u
def get_context(u, N=4):
T, D = u.shape
x = np.zeros((T, D * N))
for i in range(N - 1, T):
dat = u[i - 1, :]
for j in range(2, N + 1):
dat = np.concatenate((dat, u[i - j, :]), 1)
x[i, :] = dat
return x
def plot_data(d):
plt.figure(5)
plt.clf()
plt.imshow(d.reshape((28,28)), interpolation='gaussian')
plt.draw()
def one_hot(vec, dim=None):
"""
Convert a column vector with indices (normalised) to a one-hot representation.
Each row is a one-hot vector corresponding to an element in the original vector.
"""
length = len(vec)
if dim is None: # default dimension is the maximal dimension needed to represent 'vec'
dim = np.max(vec) + 1
m = np.tile(np.arange(dim), (length, 1))
return (vec == m)
def load_mnist():
f = gzip.open('mnist.pkl.gz','rb')
train_set, valid_set, test_set = cPickle.load(f)
f.close()
return train_set, valid_set, test_set
def most_square_shape(num_blocks, blockshape=(1,1)):
x, y = blockshape
num_x = np.ceil(np.sqrt(num_blocks * y / float(x)))
num_y = np.ceil(num_blocks / num_x)
return (num_x, num_y)
def visualise_filters(data, dim=6, posneg=True):
"""
input: a (dim*dim) x H matrix, which is reshaped into filters
"""
num_x, num_y = most_square_shape(data.shape[1], (dim, dim))
#pad with zeros so that the number of filters equals num_x * num_y
padding = np.zeros((dim*dim, num_x*num_y - data.shape[1]))
data_padded = np.hstack([data, padding])
data_split = data_padded.reshape(dim, dim, num_x, num_y)
data_with_border = np.zeros((dim+1, dim+1, num_x, num_y))
data_with_border[:dim, :dim, :, :] = data_split
filters = data_with_border.transpose(2,0,3,1).reshape(num_x*(dim+1), num_y*(dim+1))
filters_with_left_border = np.zeros((num_x*(dim+1)+1, num_y*(dim+1)+1))
filters_with_left_border[1:, 1:] = filters
if posneg:
m = np.abs(data).max()
plt.imshow(filters_with_left_border, interpolation='nearest', cmap=plt.cm.RdBu, vmin=-m, vmax=m)
else:
plt.imshow(filters_with_left_border, interpolation='nearest', cmap=plt.cm.binary, vmin = data.min(), vmax=data.max())