forked from YiwuZhong/Sub-GC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
210 lines (193 loc) · 13 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
def parse_opt():
parser = argparse.ArgumentParser()
####### Original hyper-parameters #######
# Data input settings
parser.add_argument('--input_json', type=str, default='data/cocotalk.json',
help='path to the json file containing additional info and vocab')
parser.add_argument('--input_fc_dir', type=str, default='data/cocobu_fc',
help='path to the directory containing the preprocessed fc feats')
parser.add_argument('--input_att_dir', type=str, default='data/cocobu_att',
help='path to the directory containing the preprocessed att feats')
parser.add_argument('--input_box_dir', type=str, default='data/cocobu_box',
help='path to the directory containing the boxes of att feats')
parser.add_argument('--input_label_h5', type=str, default='data/cocotalk_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--start_from', type=str, default=None,
help="""continue training from saved model at this path. Path must contain files saved by previous training process:
'infos.pkl' : configuration;
'checkpoint' : paths to model file(s) (created by tf).
Note: this file contains absolute paths, be careful when moving files around;
'model.ckpt-*' : file(s) with model definition (created by tf)
""")
parser.add_argument('--cached_tokens', type=str, default='coco-train-idxs',
help='Cached token file for calculating cider score during self critical training.')
# Model settings
parser.add_argument('--caption_model', type=str, default="show_tell",
help='show_tell, show_attend_tell, all_img, fc, att2in, att2in2, att2all2, adaatt, adaattmo, topdown, stackatt, denseatt, transformer')
parser.add_argument('--rnn_size', type=int, default=512,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument('--num_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--rnn_type', type=str, default='lstm',
help='rnn, gru, or lstm')
parser.add_argument('--input_encoding_size', type=int, default=512,
help='the encoding size of each token in the vocabulary, and the image.')
parser.add_argument('--att_hid_size', type=int, default=512,
help='the hidden size of the attention MLP; only useful in show_attend_tell; 0 if not using hidden layer')
parser.add_argument('--fc_feat_size', type=int, default=2048,
help='2048 for resnet, 4096 for vgg')
parser.add_argument('--att_feat_size', type=int, default=2048,
help='2048 for resnet, 512 for vgg')
parser.add_argument('--logit_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--use_bn', type=int, default=0,
help='If 1, then do batch_normalization first in att_embed, if 2 then do bn both in the beginning and the end of att_embed')
# feature manipulation
parser.add_argument('--norm_att_feat', type=int, default=0,
help='If normalize attention features')
parser.add_argument('--use_box', type=int, default=0,
help='If use box features')
parser.add_argument('--norm_box_feat', type=int, default=0,
help='If use box, do we normalize box feature')
# Optimization: General
parser.add_argument('--max_epochs', type=int, default=-1,
help='number of epochs')
parser.add_argument('--batch_size', type=int, default=16,
help='minibatch size')
parser.add_argument('--grad_clip', type=float, default=0.1, #5.,
help='clip gradients at this value')
parser.add_argument('--drop_prob_lm', type=float, default=0.5,
help='strength of dropout in the Language Model RNN')
parser.add_argument('--self_critical_after', type=int, default=-1,
help='After what epoch do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)')
parser.add_argument('--seq_per_img', type=int, default=5,
help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image')
# Sample related
parser.add_argument('--beam_size', type=int, default=1,
help='used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
parser.add_argument('--max_length', type=int, default=20,
help='Maximum length during sampling')
parser.add_argument('--length_penalty', type=str, default='',
help='wu_X or avg_X, X is the alpha')
parser.add_argument('--block_trigrams', type=int, default=0,
help='block repeated trigram.')
parser.add_argument('--remove_bad_endings', type=int, default=0,
help='Remove bad endings')
#Optimization: for the Language Model
parser.add_argument('--optim', type=str, default='adam',
help='what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
parser.add_argument('--learning_rate', type=float, default=4e-4,
help='learning rate')
parser.add_argument('--learning_rate_decay_start', type=int, default=-1,
help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)')
parser.add_argument('--learning_rate_decay_every', type=int, default=3,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--optim_alpha', type=float, default=0.9,
help='alpha for adam')
parser.add_argument('--optim_beta', type=float, default=0.999,
help='beta used for adam')
parser.add_argument('--optim_epsilon', type=float, default=1e-8,
help='epsilon that goes into denominator for smoothing')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight_decay')
parser.add_argument('--warmup_n', type=int, default=300,
help='iteration number for warmup during training')
# Transformer
parser.add_argument('--label_smoothing', type=float, default=0,
help='')
parser.add_argument('--noamopt', action='store_true',
help='')
parser.add_argument('--noamopt_warmup', type=int, default=2000,
help='')
parser.add_argument('--noamopt_factor', type=float, default=1,
help='')
parser.add_argument('--reduce_on_plateau', action='store_true',
help='')
parser.add_argument('--scheduled_sampling_start', type=int, default=-1,
help='at what iteration to start decay gt probability')
parser.add_argument('--scheduled_sampling_increase_every', type=int, default=5,
help='every how many iterations thereafter to gt probability')
parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05,
help='How much to update the prob')
parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.25,
help='Maximum scheduled sampling prob.')
# Evaluation/Checkpointing
parser.add_argument('--val_images_use', type=int, default=3200,
help='how many images to use when periodically evaluating the validation loss? (-1 = all)')
parser.add_argument('--save_checkpoint_every', type=int, default=2500,
help='how often to save a model checkpoint (in iterations)?')
parser.add_argument('--save_history_ckpt', type=int, default=1,
help='If save checkpoints at every save point')
parser.add_argument('--checkpoint_path', type=str, default='save',
help='directory to store checkpointed models')
parser.add_argument('--language_eval', type=int, default=0,
help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
parser.add_argument('--losses_log_every', type=int, default=25,
help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
parser.add_argument('--load_best_score', type=int, default=1,
help='Do we load previous best score when resuming training.')
# misc
parser.add_argument('--id', type=str, default='',
help='an id identifying this run/job. used in cross-val and appended when writing progress files')
parser.add_argument('--train_only', type=int, default=0,
help='if true then use 80k, else use 110k')
# Reward
parser.add_argument('--cider_reward_weight', type=float, default=1,
help='The reward weight from cider')
parser.add_argument('--bleu_reward_weight', type=float, default=0,
help='The reward weight from bleu4')
####### Graph captioning model hyper-parameters #######
parser.add_argument('--use_gpn', type=int, default=1,
help='1: use GPN module in the captioning model')
parser.add_argument('--embed_dim', type=int, default=300,
help='dim of word embeddings')
parser.add_argument('--gcn_dim', type=int, default=1024,
help='dim of the node/edge features in GCN')
parser.add_argument('--noun_fuse', type=int, default=1,
help='1: fuse the word embedding with visual features for noun nodes')
parser.add_argument('--pred_emb_type', type=int, default=1,
help='predicate embedding type')
parser.add_argument('--gcn_layers', type=int, default=2,
help='the layer number of GCN')
parser.add_argument('--gcn_residual', type=int, default=2,
help='2: there is a skip connection every 2 GCN layers')
parser.add_argument('--gcn_bn', type=int, default=0,
help='0: not use BN in GCN layers')
parser.add_argument('--sampling_prob', type=float, default=0.0,
help='Schedule sampling probability')
parser.add_argument('--obj_name_path', type=str, default='data/object_names_1600-0-20.npy',
help='the file path for object names')
parser.add_argument('--rel_name_path', type=str, default='data/predicate_names_1600-0-20.npy',
help='the file path for predicate names')
parser.add_argument('--gpn_label_thres', type=float, default=0.75,
help='the threshold of positive/negative sub-graph labels during training')
parser.add_argument('--use_MRNN_split', action='store_true',
help='use the split of MRNN on COCO Caption dataset')
parser.add_argument('--use_gt_subg', action='store_true',
help='(Sup. model for SCT) use the ground-truth sub-graphs without neighbors and same-cls nodes')
parser.add_argument('--gpn_batch', type=int, default=2,
help='the batch size for positive/negative sub-graphs during training')
parser.add_argument('--obj_num', type=int, default=37,
help='the number of detected objects + 1 dummy object')
parser.add_argument('--rel_num', type=int, default=65,
help='the number of detected relationships + 1 dummy relationship')
parser.add_argument('--num_workers', type=int, default=6,
help='number of workers to use')
args = parser.parse_args()
# Check if args are valid
assert args.rnn_size > 0, "rnn_size should be greater than 0"
assert args.num_layers > 0, "num_layers should be greater than 0"
assert args.input_encoding_size > 0, "input_encoding_size should be greater than 0"
assert args.batch_size > 0, "batch_size should be greater than 0"
assert args.drop_prob_lm >= 0 and args.drop_prob_lm < 1, "drop_prob_lm should be between 0 and 1"
assert args.seq_per_img > 0, "seq_per_img should be greater than 0"
assert args.beam_size > 0, "beam_size should be greater than 0"
assert args.save_checkpoint_every > 0, "save_checkpoint_every should be greater than 0"
assert args.losses_log_every > 0, "losses_log_every should be greater than 0"
assert args.language_eval == 0 or args.language_eval == 1, "language_eval should be 0 or 1"
assert args.load_best_score == 0 or args.load_best_score == 1, "language_eval should be 0 or 1"
assert args.train_only == 0 or args.train_only == 1, "language_eval should be 0 or 1"
return args