-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathExpandingMean.py
59 lines (50 loc) · 2.51 KB
/
ExpandingMean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""CatBoost-style target encoding. See https://youtu.be/d6UMEmeXB6o?t=818 for short explanation"""
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
# ToDo: Completely replace pandas with datatable
class ExpandingMean(CustomTransformer):
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_multiclass = False
_unsupervised = False # uses target
_uses_target = True # uses target
_target_encoding_based = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._group_means = None
self.dataset_mean = np.nan
@staticmethod
def get_default_properties():
return dict(col_type="categorical", min_cols=1, max_cols=8, relative_importance=1)
@property
def display_name(self):
return "ExpandingMean"
def transform(self, X: dt.Frame):
transformed_X = X[:, :, dt.join(self._group_means)][:, -1]
return dt.Frame(transformed_X.to_pandas().fillna(self.dataset_mean))
def fit_transform(self, X: dt.Frame, y: np.array = None):
target = '__target__'
X[:, target] = dt.Frame(y)
target_is_numeric = X[:, target][:, [bool, int, float]].shape[1] > 0
if not target_is_numeric:
X[:, target] = dt.Frame(LabelEncoder().fit_transform(X[:, target].to_pandas().iloc[:, 0].values).ravel())
self._group_means = X[:, dt.mean(dt.f[target]), dt.by(*self.input_feature_names)]
self._group_means.key = self.input_feature_names
self.dataset_mean = X[target].mean().to_numpy().ravel()[0]
# Expanding mean transform
X_ = X.to_pandas()[self.input_feature_names + [target]]
X_["index"] = X_.index
X_shuffled = X_.sample(n=len(X_), replace=False)
X_shuffled["cnt"] = 1
X_shuffled["cumsum"] = (X_shuffled
.groupby(self.input_feature_names, sort=False)['__target__']
.apply(lambda x: x.shift().cumsum()))
X_shuffled["cumcnt"] = (X_shuffled
.groupby(self.input_feature_names, sort=False)['cnt']
.apply(lambda x: x.shift().cumsum()))
X_shuffled["encoded"] = X_shuffled["cumsum"] / X_shuffled["cumcnt"]
X_shuffled["encoded"] = X_shuffled["encoded"].fillna(self.dataset_mean)
X_transformed = X_shuffled.sort_values("index")["encoded"].values
return dt.Frame(X_transformed)