diff --git a/h2o-py-mlflow-flavor/DESCRIPTION.rst b/h2o-py-mlflow-flavor/DESCRIPTION.rst index cf123bf23506..6d7ade192670 100644 --- a/h2o-py-mlflow-flavor/DESCRIPTION.rst +++ b/h2o-py-mlflow-flavor/DESCRIPTION.rst @@ -19,9 +19,9 @@ The model that was trained with H2O-3 runtime can be exported to MLFlow registry with mlflow.start_run(run_name="myrun") as run: h2o_mlflow_flavor.log_model(h2o_model=h2o_model, - artifact_path="folder", - model_type="MOJO", - extra_prediction_args=["--predictCalibrated"]) + artifact_path="folder", + model_type="MOJO", + extra_prediction_args=["--predictCalibrated"]) Compared to `log_model` functions of the other flavors being a part of MLFlow, this function has two extra arguments: @@ -78,10 +78,10 @@ The functions can be utilized as follows: mlflow.log_metrics(h2o_mlflow_flavor.get_metrics(h2o_model)) input_example = h2o_mlflow_flavor.get_input_example(h2o_model) h2o_mlflow_flavor.log_model(h2o_model=h2o_model, - input_example=input_example, - artifact_path="folder", - model_type="MOJO", - extra_prediction_args=["--predictCalibrated"]) + input_example=input_example, + artifact_path="folder", + model_type="MOJO", + extra_prediction_args=["--predictCalibrated"]) Model Scoring