forked from SeungoneKim/SICK_Summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
250 lines (220 loc) · 8.35 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Disable all library warning for the demo
import warnings
warnings.filterwarnings("ignore")
from argparse import Namespace
import time
import numpy as np
import torch
import os
from run import get_finetune_args, get_model, get_tokenizer, is_cuda_available, load_checkpoint, load_pretrained_model
from src.config.args import get_parser
from src.config.enums import FrameworkOption
from src.data.dataset import SamsumDataset_total
from src.experiments.few_shot import FewShotLearning
from src.experiments.sick import SickExperiment
from src.logging.demo_logger import DemoLogger
from src.logging.local_logger import LocalLoggerDecorator
from src.logging.logger import DummyLogger, Logger
from src.logging.wandb_logger import WandbLoggerDecorator
def get_demo_dataset(tokenizer, config):
use_extra_supervision = (args.framework == FrameworkOption.BASIC_SICK_PLUS_PLUS) or (
args.framework == FrameworkOption.IDIOM_SICK_PLUS_PLUS
)
total_dataset = SamsumDataset_total(
config.encoder_max_len,
config.decoder_max_len,
tokenizer,
extra_context=config.use_commonsense,
paracomet=config.use_paracomet,
relation=config.relation,
supervision_relation=config.supervision_relation,
roberta=config.use_roberta,
sentence_transformer=config.use_sentence_transformer,
extra_supervision=use_extra_supervision,
idiom=config.idiom,
is_llm=config.is_llm,
)
# TODO: change indexes for the sub-dataset
train_dataset = torch.utils.data.Subset(total_dataset.getTrainData(), [i for i in range(10)])
eval_dataset = torch.utils.data.Subset(total_dataset.getEvalData(), [i for i in range(5)])
test_dataset = torch.utils.data.Subset(total_dataset.getTestData(), [18])
# train_dataset = total_dataset.getTrainData()
# eval_dataset = total_dataset.getEvalData()
# test_dataset = total_dataset.getTestData()
return train_dataset, eval_dataset, test_dataset
def get_demo_model(config, is_checkpoint, tokenizer, device):
print(f"Initializing Model")
if is_checkpoint:
return load_checkpoint(config)
else:
return load_pretrained_model(config, tokenizer, device)
def get_logger(args: Namespace) -> Logger:
logger = DummyLogger(args)
if not args.not_use_local_logging:
logger = LocalLoggerDecorator(logger)
if not args.not_use_wandb:
logger = WandbLoggerDecorator(logger)
logger = DemoLogger(logger)
return logger
def main(config: Namespace):
start_time = time.time()
# Configure pipeline
# General things
device = is_cuda_available()
gen = np.random.default_rng(config.seed)
tokenizer = get_tokenizer(config)
train_dataset, eval_dataset, test_dataset = get_demo_dataset(tokenizer, config)
# model = get_demo_model(config, config.is_checkpoint, tokenizer, device)
model = get_model(config, tokenizer, device)
test_kwargs = {}
try:
logger = get_logger(config)
if config.framework == FrameworkOption.FEW_SHOT or config.framework == FrameworkOption.FEW_SHOT_IDIOM:
experiment = FewShotLearning(
model=model,
train_ds=train_dataset,
eval_ds=eval_dataset,
test_ds=test_dataset,
tokenizer=tokenizer,
temperature=config.temperature,
k=config.k,
gen=gen,
device=device,
logger=logger,
is_test_ds_dialog_sum=False,
)
elif config.framework == FrameworkOption.BASIC_SICK or config.framework == FrameworkOption.IDIOM_SICK:
finetune_args = get_finetune_args(config)
test_kwargs["num_beams"] = config.num_beams
experiment = SickExperiment(
model=model,
finetune_args=finetune_args,
freeze_encoder=config.freeze_encoder,
train_ds=train_dataset,
eval_ds=eval_dataset,
test_ds=test_dataset,
tokenizer=tokenizer,
gen=gen,
device=device,
logger=logger,
is_plus_version=False,
is_test_ds_dialog_sum=False,
)
elif (
config.framework == FrameworkOption.BASIC_SICK_PLUS_PLUS
or config.framework == FrameworkOption.IDIOM_SICK_PLUS_PLUS
):
finetune_args = get_finetune_args(config)
test_kwargs["num_beams"] = config.num_beams
experiment = SickExperiment(
model=model,
finetune_args=finetune_args,
freeze_encoder=config.freeze_encoder,
train_ds=train_dataset,
eval_ds=eval_dataset,
test_ds=test_dataset,
tokenizer=tokenizer,
gen=gen,
device=device,
logger=logger,
is_plus_version=True,
is_test_ds_dialog_sum=False,
)
experiment.test(**test_kwargs)
finally:
results = logger.get_saved_results() # type: ignore
logger.finish()
end_time = time.time()
torch.cuda.empty_cache()
print(f"Elapsed time: {round(end_time - start_time, 2)}")
return results
if __name__ == "__main__":
try:
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
except KeyError:
print("ERROR: the HUGGING_FACE_TOKEN is not provided as environment variable")
exit(1)
parser = get_parser()
configs = {
"Normal Sick": [
f"--hugging_face_token={hugging_face_token}",
"--project=demo",
"--framework=idiom_sick",
"--exp_name=idiom_sick_demo",
"--seed=516",
"--phase=test",
"--dataset_name=samsum",
"--model_name=facebook/bart-large-xsum",
"--use_paracomet=True",
"--relation=xIntent",
"--use_sentence_transformer=True",
"--idiom=False",
"--load_checkpoint=True",
"--model_checkpoint=./sick_best",
"--not_use_local_logging",
"--not_use_wandb",
],
"Idiom Sick": [
f"--hugging_face_token={hugging_face_token}",
"--project=demo",
"--framework=idiom_sick",
"--exp_name=idiom_sick_demo",
"--seed=516",
"--phase=test",
"--dataset_name=samsum",
"--model_name=facebook/bart-large-xsum",
"--use_paracomet=True",
"--relation=xIntent",
"--use_sentence_transformer=True",
"--idiom=True",
"--load_checkpoint=True",
"--model_checkpoint=./idiom_sick_best",
"--not_use_local_logging",
"--not_use_wandb",
],
"Normal FewShot t=0, k=2": [
f"--hugging_face_token={hugging_face_token}",
"--project=few_shot_idiom",
"--framework=idiom_few_shot",
"--exp_name=idiom_samsum_t0_k2",
"--seed=516",
"--phase=all",
"--dataset_name=samsum",
"--model_name=meta-llama/Llama-2-7b-chat-hf",
"--epoch=1",
"--use_paracomet=True",
"--relation=xIntent",
"--use_sentence_transformer=True",
"--temperature=0",
"--k=2",
"--is_llm=True",
"--idiom=False",
],
"Idiom FewShot t=0, k=2": [
f"--hugging_face_token={hugging_face_token}",
"--project=few_shot_idiom",
"--framework=idiom_few_shot",
"--exp_name=idiom_samsum_t0_k2",
"--seed=516",
"--phase=all",
"--dataset_name=samsum",
"--model_name=meta-llama/Llama-2-7b-chat-hf",
"--epoch=1",
"--use_paracomet=True",
"--relation=xIntent",
"--use_sentence_transformer=True",
"--temperature=0",
"--k=2",
"--is_llm=True",
"--idiom=True",
],
}
pipelines_results = []
for key, config in configs.items():
print(f"Running config: {key}")
args = parser.parse_args(config)
pipeline_result = main(args)
pipelines_results.append(pipeline_result)
for k, result in zip(configs.keys(), pipelines_results):
print(k)
print(result)