-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
362 lines (335 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import sys
import random
import numpy as np
from models.opt import OPTClass
import torch
import time
from datautils import get_loaders
from lm_evaluation.lm_eval import tasks, evaluator
from quantize.opt_reorder_quantize import opt_reorder_quantize
import datetime
from models.int_opt_layer import QuantOPTAttention
from pprint import pprint
from parallel_utils import map_layers_to_multi_gpus, get_lowest_occupied_gpu
import torch.nn as nn
from quantize.opt_reorder_quantize import opt_reorder_quantize
from tqdm import tqdm
torch.backends.cudnn.benchmark = True
net_choices = [
"opt-125m",
"opt-1.3b",
"opt-6.7b",
"opt-13b",
"opt-30b",
"opt-66b",
# "llama-7b",
# "llama-13b",
# "bloom-3b",
]
# tasks lambada_openai,piqa,arc_easy,arc_challenge,openbookqa,boolq
@torch.no_grad()
def evaluate(lm, args):
for name, m in lm.model.named_modules():
if isinstance(m, (QuantOPTAttention,)):
m.name = name
# m.register_forward_hook(mem_test_hook)
results = {}
if args.multigpu:
if "opt" in args.model:
map_layers_to_multi_gpus(lm.model.model.decoder.layers)
input_device = lm.model.model.decoder.layers[0].device
output_device = lm.model.model.decoder.layers[-1].device
lm._device = input_device
assert input_device == output_device
lm.model.model.decoder.embed_positions.to(input_device)
lm.model.model.decoder.embed_tokens.to(input_device)
lm.model.model.decoder.final_layer_norm.to(output_device)
lm.model.lm_head.to(output_device)
elif "llama" in args.model:
map_layers_to_multi_gpus(lm.model.model.layers)
input_device = lm.model.model.layers[0].device
output_device = lm.model.model.layers[-1].device
assert input_device == output_device
lm._device = input_device
else:
if "opt" in args.model:
lm.model.model.decoder = lm.model.model.decoder.to(lm.device)
elif "llama" in args.model:
lm.model.model = lm.model.model.to(lm.device)
if args.eval_ppl:
for dataset in ["wikitext2", "ptb", "c4"]:
# for dataset in ['c4']:
if "opt" in args.model:
cache_testloader = f"/tmp/{dataset}_testloader_opt_all.cache"
if os.path.exists(cache_testloader):
testloader = torch.load(cache_testloader)
# print(f"load calibration from {cache_testloader}")
else:
dataloader, testloader = get_loaders(
dataset,
seed=args.seed,
model=args.model,
seqlen=lm.seqlen,
cache_dir=args.cache_dir,
)
torch.save(testloader, cache_testloader)
elif "llama" in args.model:
cache_testloader = f"/tmp/{dataset}_testloader_llama_all.cache"
if os.path.exists(cache_testloader):
testloader = torch.load(cache_testloader)
# print(f"load calibration from {cache_testloader}")
else:
dataloader, testloader = get_loaders(
dataset,
seed=args.seed,
model=args.model,
seqlen=lm.seqlen,
cache_dir=args.cache_dir,
)
torch.save(testloader, cache_testloader)
# print(dataset)
if "c4" == dataset:
testenc = testloader
else:
testenc = testloader.input_ids
nsamples = testenc.numel() // lm.seqlen
use_cache = lm.model.config.use_cache
lm.model.config.use_cache = False
lm.model.eval()
nlls = []
for i in tqdm(range(nsamples)):
batch = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)].to(
lm.device
)
if "opt" in args.model:
outputs = lm.model.model.decoder(batch)
elif "llama" in args.model:
outputs = lm.model.model(batch)
hidden_states = outputs[0]
logits = lm.model.lm_head(hidden_states)
shift_logits = logits[:, :-1, :]
shift_labels = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)][
:, 1:
].to(lm.model.lm_head.weight.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
)
neg_log_likelihood = loss.float() * lm.seqlen
nlls.append(neg_log_likelihood)
if i == args.limit:
break
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * lm.seqlen))
print(dataset, ppl.item())
lm.model.config.use_cache = use_cache
# pprint(args.model)
results[dataset] = ppl.item()
if args.tasks != "":
t_results = evaluator.simple_evaluate(
lm,
tasks=args.tasks,
num_fewshot=args.num_fewshot,
limit=None if args.limit == -1 else args.limit,
)
results.update(t_results)
pprint(results)
return results
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("net", type=str, choices=net_choices)
parser.add_argument(
"--cache_dir", default="./data", type=str, help="OPT model cache_dir"
)
parser.add_argument(
"--calib_dataset",
type=str,
default="mix",
choices=["wikitext2", "ptb", "c4", "mix"],
help="Where to extract calibration data from.",
)
parser.add_argument(
"--nsamples", type=int, default=128, help="Number of calibration data samples."
)
parser.add_argument(
"--percdamp",
type=float,
default=0.01,
help="Percent of the average Hessian diagonal to use for dampening.",
)
parser.add_argument(
"--seed", type=int, default=2, help="Seed for sampling the calibration data."
)
parser.add_argument(
"--metric",
type=str,
default="ema_minmax",
choices=["minmax", "ema_minmax", "mse", "layer_mse"],
)
parser.add_argument("--tasks", default="")
parser.add_argument("--eval_ppl", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--output_path", default="./output")
parser.add_argument("--wbits", type=int, default=4)
parser.add_argument("--abits", type=int, default=4)
parser.add_argument("--load", type=str, default="")
parser.add_argument("--disable_w_quant", action="store_true")
parser.add_argument("--disable_a_quant", action="store_true")
parser.add_argument("--R1_clusters", type=int, default=32)
parser.add_argument("--R2_clusters", type=int, default=4)
parser.add_argument("--R3_clusters", type=int, default=4)
parser.add_argument("--R4_clusters", type=int, default=32)
parser.add_argument("--R5_clusters", type=int, default=32)
parser.add_argument("--reorder", type=str, default="12345", help="like 12345 or 1")
parser.add_argument(
"--w_quantizer", type=str, default="gptq", choices=["gptq", "normal"]
)
parser.add_argument("--limit", type=int, default=-1)
parser.add_argument("--a_dynamic", action="store_true")
parser.add_argument("--eval_base_ppl", action="store_true")
parser.add_argument("--act_dist_plot", action="store_true")
parser.add_argument("--only_quant_kv", action="store_true")
parser.add_argument(
"--pack_weight",
action="store_true",
help="enable this to reduce memory consumption",
)
parser.add_argument(
"--multigpu", action="store_true", help="at eval, map model to multiple gpus"
)
args = parser.parse_args()
args.batch_size = 1 # BS=1 is used for zeroShot tasks!
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if "opt" in args.net:
args.model = f"facebook/{args.net}"
if not os.path.exists(f"{args.cache_dir}/{args.net.split('-')[0]}/"):
os.makedirs(f"{args.cache_dir}/{args.net.split('-')[0]}/")
args.cache_dir = (
f"{args.cache_dir}/{args.net.split('-')[0]}/{args.net.split('-')[1]}"
)
print(args.cache_dir)
cache_file = f"{args.cache_dir}/torch_model.pth"
if os.path.exists(cache_file):
lm = torch.load(cache_file)
else:
lm = OPTClass(args)
torch.save(lm, cache_file)
lm.model.eval()
else:
raise NotImplementedError
print("=== start quantization ===")
if args.load:
print("Loading checkpoint from {}...".format(args.load))
lm.model.load_state_dict(torch.load(args.load))
tick = time.time()
if "opt" in args.model:
cache_dataloader = (
f"/tmp/dataloader_opt_{args.calib_dataset}_{args.nsamples}.cache"
)
if os.path.exists(cache_dataloader):
dataloader = torch.load(cache_dataloader)
print(f"load calibration from {cache_dataloader}")
else:
dataloader, testloader = get_loaders(
args.calib_dataset,
nsamples=args.nsamples,
seed=args.seed,
model=args.model,
seqlen=lm.seqlen,
cache_dir=args.cache_dir,
)
torch.save(dataloader, cache_dataloader)
lm.model.eval()
else:
raise NotImplementedError()
args.weight_quant_params = {
"n_bits": args.wbits,
"per_channel_axes": [0],
"symmetric": False,
"metric": "minmax",
}
args.act_quant_params = {
"n_bits": 16 if args.only_quant_kv else args.abits,
"per_channel_axes": [],
"symmetric": False,
"metric": args.metric,
"dynamic": args.a_dynamic,
}
args.q_quant_params = {
"n_bits": 16 if args.only_quant_kv else args.abits,
"per_channel_axes": [],
"symmetric": False,
"metric": args.metric,
"dynamic": args.a_dynamic,
}
args.k_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"metric": args.metric,
"dynamic": args.a_dynamic,
}
args.v_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"metric": args.metric,
"dynamic": args.a_dynamic,
}
args.layer_norm_out_quant_params = {
"n_bits": 16 if args.only_quant_kv else max(8, args.abits),
"per_channel_axes": [],
"symmetric": False,
"metric": args.metric,
"dynamic": args.a_dynamic,
}
args.p_quant_params = {
"n_bits": 16 if args.only_quant_kv else max(8, args.abits),
"metric": "fix0to1",
}
n_clusters = {
"R1": args.R1_clusters,
"R2": args.R2_clusters,
"R3": args.R3_clusters,
"R4": args.R4_clusters,
"R5": args.R5_clusters,
}
if args.multigpu:
gpu_id = get_lowest_occupied_gpu(wait_memory=5000)
lm._device = f"cuda:{gpu_id}"
print(f"set quantization in gpu {gpu_id}")
if "opt" in args.model:
opt_reorder_quantize(
lm,
args,
dataloader,
n_clusters,
args.reorder,
)
for layer in lm.model.model.decoder.layers:
if hasattr(layer, "set_quant_state"):
layer.set_quant_state(
not args.disable_w_quant, not args.disable_a_quant
)
print(time.time() - tick)
results = evaluate(lm, args)
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
with open(
f"{args.output_path}/{args.net}.txt",
"a+",
) as f:
now = datetime.datetime.now()
formatted_time = now.strftime("%Y-%m-%d %H:%M:%S")
f.write(
f"{' '.join(sys.argv)} {formatted_time} \n {args} \n w{args.wbits}a{args.abits} {results}\n\n"
)
if __name__ == "__main__":
print(sys.argv)
main()