forked from liucongg/GPT2-NewsTitle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
230 lines (212 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding:utf-8 -*-
# @project: GPT2-NewsTitle
# @filename: train.py
# @author: 刘聪NLP
# @contact: [email protected]
# @time: 2020/12/16 16:28
"""
文件说明:
通过新闻正文生成新闻标题的GPT2模型的训练文件
"""
import torch
import os
import random
import numpy as np
import argparse
import logging
from transformers.modeling_gpt2 import GPT2Config
from model import GPT2LMHeadModel
from transformers import BertTokenizer
from data_set import GPT2NewsTitleDataSet, collate_func
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def train(model, device, train_data, test_data, args):
"""
训练模型
Args:
model: 模型
device: 设备信息
train_data: 训练数据类
test_data: 测试数据类
args: 训练参数配置信息
Returns:
"""
tb_write = SummaryWriter()
if args.gradient_accumulation_steps < 1:
raise ValueError("gradient_accumulation_steps参数无效,必须大于等于1")
# 计算真实的训练batch_size大小
train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
train_sampler = RandomSampler(train_data)
train_data_loader = DataLoader(train_data, sampler=train_sampler,
batch_size=train_batch_size, collate_fn=collate_func)
total_steps = int(len(train_data_loader) * args.num_train_epochs / args.gradient_accumulation_steps)
logger.info("总训练步数为:{}".format(total_steps))
model.to(device)
# 获取模型所有参数
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
# 设置优化器
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_proportion * total_steps),
num_training_steps=total_steps)
# 清空cuda缓存
torch.cuda.empty_cache()
# 将模型调至训练状态
model.train()
title_id = train_data.title_id
tr_loss, logging_loss, min_loss = 0.0, 0.0, 0.0
global_step = 0
# 开始训练模型
for iepoch in trange(0, int(args.num_train_epochs), desc="Epoch", disable=False):
iter_bar = tqdm(train_data_loader, desc="Iter (loss=X.XXX)", disable=False)
for step, batch in enumerate(iter_bar):
input_ids = batch["input_ids"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
# 获取训练结果
outputs = model.forward(input_ids=input_ids, token_type_ids=token_type_ids, labels=input_ids, title_id=title_id)
loss = outputs[0]
tr_loss += loss.item()
# 将损失值放到Iter中,方便观察
iter_bar.set_description("Iter (loss=%5.3f)" % loss.item())
# 判断是否进行梯度累积,如果进行,则将损失值除以累积步数
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
# 损失进行回传
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# 当训练步数整除累积步数时,进行参数优化
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
# 如果步数整除logging_steps,则记录学习率和训练集损失值
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_write.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_write.add_scalar("train_loss", (tr_loss-logging_loss) /
(args.logging_steps*args.gradient_accumulation_steps), global_step)
logging_loss = tr_loss
# 如果步数整除eval_steps,则进行模型测试,记录测试集的损失
if args.eval_steps > 0 and global_step % args.eval_steps == 0:
eval_loss = evaluate(model, device, test_data, args)
tb_write.add_scalar("test_loss", eval_loss, global_step)
model.train()
# 每个epoch进行完,则保存模型
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
# 清空cuda缓存
torch.cuda.empty_cache()
def evaluate(model, device, test_data, args):
"""
对测试数据集进行模型测试
Args:
model: 模型
device: 设备信息
test_data: 测试数据类
args: 训练参数配置信息
Returns:
"""
# 构造测试集的DataLoader
test_sampler = SequentialSampler(test_data)
test_data_loader = DataLoader(test_data, sampler=test_sampler,
batch_size=args.test_batch_size, collate_fn=collate_func)
iter_bar = tqdm(test_data_loader, desc="iter", disable=False)
title_id = test_data.title_id
total_loss, total = 0.0, 0.0
# 进行测试
for step, batch in enumerate(iter_bar):
# 模型设为eval
model.eval()
with torch.no_grad():
input_ids = batch["input_ids"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
# 获取预测结果
outputs = model.forward(input_ids=input_ids, token_type_ids=token_type_ids, labels=input_ids, title_id=title_id)
loss = outputs[0]
loss = loss.item()
# 对loss进行累加
total_loss += loss*len(batch["input_ids"])
total += len(batch["input_ids"])
# 计算最终测试集的loss结果
test_loss = total_loss / total
return test_loss
def set_args():
"""设置训练模型所需参数"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0', type=str, help='设置训练或测试时使用的显卡')
parser.add_argument('--config_path', default='./config/config.json', type=str, help='模型参数配置信息')
parser.add_argument('--vocab_path', default='./vocab/vocab.txt', type=str, help='词表,该词表为小词表,并增加了一些新的标记')
parser.add_argument('--train_file_path', default='./data_dir/train_data.json', type=str, help='新闻标题生成的训练数据')
parser.add_argument('--test_file_path', default='./data_dir/test_data.json', type=str, help='新闻标题生成的测试数据')
parser.add_argument('--pretrained_model_path', default=None, type=str, help='预训练的GPT2模型的路径')
parser.add_argument('--data_dir', default='./data_dir', type=str, help='生成缓存数据的存放路径')
parser.add_argument('--num_train_epochs', default=5, type=int, help='模型训练的轮数')
parser.add_argument('--train_batch_size', default=16, type=int, help='训练时每个batch的大小')
parser.add_argument('--test_batch_size', default=8, type=int, help='测试时每个batch的大小')
parser.add_argument('--learning_rate', default=1e-4, type=float, help='模型训练时的学习率')
parser.add_argument('--warmup_proportion', default=0.1, type=float, help='warm up概率,即训练总步长的百分之多少,进行warm up')
parser.add_argument('--adam_epsilon', default=1e-8, type=float, help='Adam优化器的epsilon值')
parser.add_argument('--logging_steps', default=20, type=int, help='保存训练日志的步数')
parser.add_argument('--eval_steps', default=4000, type=int, help='训练时,多少步进行一次测试')
parser.add_argument('--gradient_accumulation_steps', default=4, type=int, help='梯度积累')
parser.add_argument('--max_grad_norm', default=1.0, type=float, help='')
parser.add_argument('--output_dir', default='output_dir/', type=str, help='模型输出路径')
parser.add_argument('--seed', type=int, default=2020, help='随机种子')
parser.add_argument('--max_len', type=int, default=512, help='输入模型的最大长度,要比config中n_ctx小')
return parser.parse_args()
def main():
# 设置模型训练参数
args = set_args()
# 设置显卡信息
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICE"] = args.device
# 获取device信息,用于模型训练
device = torch.device("cuda" if torch.cuda.is_available() and int(args.device) >= 0 else "cpu")
# 设置随机种子,方便模型复现
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# 加载模型的config
model_config = GPT2Config.from_json_file(args.config_path)
# 实例化GPT2LMHeadModel模型,这里我们没有加载预训练好的模型,而是直接从头开始训练。
# 为什么从头开始训练?我们采用的是小模型,只有6层,并且词表也做了修改,没有找到合适的预训练模型。(其实是,穷人,卡不行。)
# 判断是否使用预训练好的GPT2模型
if args.pretrained_model_path:
model = GPT2LMHeadModel.from_pretrained(args.pretrained_model_path)
else:
# 如果没有指定的预训练模型,则初始化模型
model = GPT2LMHeadModel(config=model_config)
# model = GPT2LMHeadModel(config=model_config)
# 实例化tokenizer
tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=True)
# 将[space]作为一个分割整体,例如:"我爱[Space]中国。",使用原始tokenizer分词结果为"['我', '爱', '[', 'Space', ']', '中', '国', '。']";
# 增加分割符号后的结果为"['我', '爱', '[Space]', '中', '国', '。']"
tokenizer.add_tokens("[Space]", special_tokens=True)
# 创建模型的输出目录
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
# 加载训练数据和测试数据
train_data = GPT2NewsTitleDataSet(tokenizer, args.max_len, args.data_dir, "train", args.train_file_path)
test_data = GPT2NewsTitleDataSet(tokenizer, args.max_len, args.data_dir, "test", args.test_file_path)
# 开始训练
train(model, device, train_data, test_data, args)
if __name__ == '__main__':
main()