-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathevaluate.py
67 lines (47 loc) · 2.08 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from argparse import ArgumentParser
from functools import partial
import cPickle as pickle
import numpy as np
def make_id2word(vocab):
return dict((id, word) for word, (id, _) in vocab.iteritems())
def merge_main_context(W, merge_fun=lambda m, c: np.mean([m, c], axis=0),
normalize=True):
"""
Merge the main-word and context-word vectors for a weight matrix
using the provided merge function (which accepts a main-word and
context-word vector and returns a merged version).
By default, `merge_fun` returns the mean of the two vectors.
"""
vocab_size = len(W) / 2
for i, row in enumerate(W[:vocab_size]):
merged = merge_fun(row, W[i + vocab_size])
if normalize:
merged /= np.linalg.norm(merged)
W[i, :] = merged
return W[:vocab_size]
def most_similar(W, vocab, id2word, word, n=15):
"""
Find the `n` words most similar to the given `word`. The provided
`W` must have unit vector rows, and must have merged main- and
context-word vectors (i.e., `len(W) == len(word2id)`).
Returns a list of word strings.
"""
assert len(W) == len(vocab)
word_id = vocab[word][0]
dists = np.dot(W, W[word_id])
top_ids = np.argsort(dists)[::-1][:n + 1]
return [id2word[id] for id in top_ids if id != word_id][:n]
def parse_args():
parser = ArgumentParser(
description=('Evaluate a GloVe vector-space model on a word '
'analogy test set'))
parser.add_argument('vectors_path', type=partial(open, mode='rb'),
help=('Path to serialized vectors file as '
'produced by this GloVe implementation'))
parser.add_argument('analogies_paths', type=partial(open, mode='r'),
nargs='+',
help=('Paths to analogy text files, where each '
'line consists of four words separated by '
'spaces `a b c d`, expressing the analogy '
'a:b :: c:d'))
return parser.parse_args()