-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.cxx
231 lines (210 loc) · 6.02 KB
/
generate.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Generate and write test data file
//
// For the file format generated, see rawdata.h
#include <cstdio>
#include <cstdlib>
#include <cstdint>
#include <cstring>
#include <cmath>
#include <iostream>
#include <unistd.h>
#include <cassert>
#include <tuple>
#include <stdexcept>
//#include <vector>
#include <memory>
#include <sstream>
#include "rawdata.h"
using namespace std;
// Configuration
static constexpr size_t SIZE = 1024;
static constexpr long int seed = 87934;
struct Config {
const char* prgname{""};
const char* filename{""};
int debug{0};
unsigned NEVT{10000};
unsigned NDET{1};
};
static Config conf;
// Gaussian-distributed random numbers
static inline
tuple<double,double> gauss()
{
// Generate a pair of Gaussian-distributed random numbers.
// Results are in y1 and y2.
double x1, x2, w;
do {
x1 = 2.0 * drand48() - 1.0;
x2 = 2.0 * drand48() - 1.0;
w = x1 * x1 + x2 * x2;
} while ( w >= 1.0 );
w = sqrt( (-2.0 * log( w ) ) / w );
return make_tuple(x1*w, x2*w);
}
// Usage message
static void usage()
{
cerr << "Usage: " << conf.prgname << " [options] output_file" << endl
<< "where options are:" << endl
<< " [ -c num ]\tnumber of detectors to simulate (default 1)" << endl
<< " [ -n nev_max ]\t\tset number of events (default 10000)" << endl
<< " [ -d debug_level ]\tset debug level (default 0)" << endl
<< " [ -h ]\t\t\tprint this help message" << endl;
exit(255);
}
// Eventbuffer class
class EventBuffer {
public:
using EvBuf_t = uint32_t;
explicit EventBuffer(size_t size) :
m_nwords(size),
m_wordsz(sizeof(EvBuf_t)),
m_buf(new EvBuf_t[size]),
m_bufstart((char*)m_buf.get()),
m_evtp(m_bufstart)
{}
void fill_header(uint32_t ndet) {
EventHeader evthdr(0, ndet);
m_evtp = m_bufstart;
memcpy(m_evtp, &evthdr, sizeof(evthdr) );
m_evtp += sizeof(evthdr);
}
void append_module(uint32_t idet, uint32_t ndata, EvDat_t* data) {
ModuleHeader modhdr( sizeof(modhdr) + ndata*sizeof(EvDat_t),
idet+1, // in the data file, module numbers start counting at 1
ndata );
size_t size_now = modhdr.module_length + m_evtp - m_bufstart;
if( size_now > m_nwords * m_wordsz ) {
ostringstream ostr;
ostr << "Event too large, size = " << size_now << endl;
throw runtime_error(ostr.str());
}
// Append module header and data array to eventbuffer
memcpy(m_evtp, &modhdr, sizeof(modhdr) );
m_evtp += sizeof(modhdr);
memcpy(m_evtp, data, ndata * sizeof(EvDat_t) );
m_evtp += ndata * sizeof(EvDat_t);
}
void write( FILE* file ) {
// Calculate total event length
auto *buf = (EvBuf_t*)m_bufstart;
buf[0] = m_evtp-m_bufstart;
// Write the buffer to file
size_t c = fwrite( buf, 1, buf[0], file );
if( c != buf[0] ) {
throw runtime_error("File write error");
}
}
private:
const size_t m_nwords;
const size_t m_wordsz;
unique_ptr<uint32_t> m_buf;
char* m_bufstart;
char* m_evtp;
};
// Command line parser
void get_args( int argc, char** argv )
{
conf.prgname = argv[0];
if( strlen(conf.prgname) >= 2 && strncmp(conf.prgname,"./",2) == 0 )
conf.prgname += 2;
int opt;
while( (opt = getopt(argc, argv, "c:d:n:h")) != -1 ) {
switch (opt) {
case 'c':
conf.NDET = stoi(optarg);
if( conf.NDET > MAXMODULES ) {
cerr << "Too many detectors, max " << MAXMODULES << endl;
exit(255);
}
break;
case 'd':
conf.debug = stoi(optarg);
break;
case 'n':
conf.NEVT = stoi(optarg);
break;
case 'h':
default:
usage();
break;
}
}
if( optind >= argc ) {
cerr << "Output file name missing" << endl;
usage();
}
conf.filename = argv[optind];
}
int main( int argc, char** argv )
{
get_args(argc, argv);
// Open output
FILE* file = fopen(conf.filename, "wb");
if( !file ) {
cerr << "Cannot open file " << conf.filename << endl;
exit(1);
}
srand48(seed);
EventBuffer evbuffer(SIZE);
try {
// Generate event data
for( unsigned iev = 0; iev < conf.NEVT; ++iev ) {
evbuffer.fill_header(conf.NDET);
for( unsigned idet = 0; idet < conf.NDET; ++idet ) {
unsigned ndata;
EvDat_t data[MAXDATA];
switch( idet ) {
case 1:
// Module type 2 wants 4-8 data points for linear fit
ndata = unsigned(5. * drand48()) + 4;
{
double slope = (2.0 * drand48() - 1.0);
double inter = (2.0 * drand48() - 1.0);
for( unsigned i = 0; i < ndata; ++i ) {
assert(2 * i + 1 < MAXDATA);
// y = error + intercept + slope*x;
auto [y1,y2] = gauss();
double x = i - 3.5 + drand48();
data[2 * i] = x;
data[2 * i + 1] = y1 / 20. + inter + slope * x;
}
}
ndata *= 2;
break;
case 2:
// Module type 3 wants a single data word indicating the desired precision
ndata = 1;
data[0] = 0.0;
while( data[0] < 300. ) {
auto [y1,y2] = gauss();
data[0] = 2000. + 200. * y1;
}
break;
default:
// Generate between 1 and MAXDATA random data values per module
ndata = unsigned(MAXDATA * drand48()) + 1;
for( unsigned i = 0; i < ndata; ++i ) {
data[i] = 20.0 * drand48() - 10.0;
}
break;
}
evbuffer.append_module(idet, ndata, data);
}
evbuffer.write(file);
}
}
catch ( const exception& e ) {
cerr << "Error while generating events: " << e.what() << endl;
fclose(file);
return 1;
}
if( fclose(file) != 0) {
cerr << "Error writing output file " << conf.filename << endl;
return 1;
}
cout << "Successfully generated " << conf.NEVT << " events for "
<< conf.NDET << " detectors" << endl;
return 0;
}