diff --git a/_modules/week-01.md b/_modules/week-01.md index 7bdfbc9..e732206 100644 --- a/_modules/week-01.md +++ b/_modules/week-01.md @@ -9,8 +9,12 @@ Jan 7 : [Slides](assets/slides/jan7.pdf) • [Recording]() : **Survey**{: .label .label-survey} [Beginning of Quarter Survey](https://forms.gle/4fuE1HUFbd13NKbp7) **(Due: End of Week 2 - 1/19)** : **Readings**{: .label .label-reading} **(Due 1/14)** - * **Required**: [1.1 - MLSys : Intro](https://mlsysbook.ai/contents/core/introduction/introduction.html), [1.2 - DNN](https://mlsysbook.ai/contents/core/dnn_architectures/dnn_architectures.html#sec-deep-learning-primer-resource) - * **Optional**: [1.3 - Petuum](https://arxiv.org/abs/1312.7651), [1.4 - Systems Challenges for AI](https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf) + * **Required**: + * [1.1 - MLSys : Intro](https://mlsysbook.ai/contents/core/introduction/introduction.html) + * [1.2 - DNN](https://mlsysbook.ai/contents/core/dnn_architectures/dnn_architectures.html#sec-deep-learning-primer-resource) + * **Optional**: + * [1.3 - Petuum](https://arxiv.org/abs/1312.7651) + * [1.4 - Systems Challenges for AI](https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf) @@ -29,7 +33,8 @@ Jan 14 * [2.2 - PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703) * [2.3 - Automatic Differentiation in Machine Learning: a Survey (Page 1 - 14 (Chapter 1 - 3)](https://arxiv.org/pdf/1502.05767) * **Optional**: - * 2.4 - Pytorch autodiff blogs: [(a) Overview of PyTorch Autograd Engine](https://pytorch.org/blog/overview-of-pytorch-autograd-engine/) [(b) How Computational Graphs are Constructed in PyTorch](https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/) + * [2.4(a) - Pytorch autodiff blogs (a): Overview of PyTorch Autograd Engine](https://pytorch.org/blog/overview-of-pytorch-autograd-engine/) + * [2.4(b) - Pytorch autodiff blogs (b): How Computational Graphs are Constructed in PyTorch](https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/) * [2.5 - DyNet: The Dynamic Neural Network Toolkit](https://arxiv.org/pdf/1701.03980)