Skip to content

Latest commit

 

History

History
56 lines (41 loc) · 1.57 KB

File metadata and controls

56 lines (41 loc) · 1.57 KB

A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement

A minimum unofficial implementation of the A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement (CRN) using PyTorch.

ToDo

  • Real-time version
  • Update trainer
  • Visualization of the spectrogram and the metrics (PESQ, STOI, SI-SDR) in the training
  • More docs

Usage

Training:

python train.py -C config/train/baseline_model.json5

Inference:

python inference.py \
    -C config/inference/basic.json5 \
    -cp ~/Experiments/CRN/baseline_model/checkpoints/latest_model.tar \
    -dist ./enhanced

Check out the README of Wave-U-Net for SE to learn more.

Performance

PESQ, STOI, SI-SDR on DEMAND - Voice Bank test dataset, for reference only:

Experiment PESQ SI-SDR STOI
Noisy 1.979 8.511 0.9258
CRN 2.528 17.71 0.9325
CRN signal approximation 2.606 17.84 0.9382

Dependencies

  • Python==3.*.*
  • torch==1.*
  • librosa==0.7.0
  • tensorboard
  • pesq
  • pystoi
  • matplotlib
  • tqdm

References