-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathtrain.py
96 lines (76 loc) · 3.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import os
import json5
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from util.utils import initialize_config
def main(config, resume):
# Random seed for both CPU and GPU.
torch.manual_seed(config["seed"])
np.random.seed(config["seed"])
def collate_fn_pad(batch):
"""
Returns:
[B, F, T (Longest)]
"""
noisy_list = []
clean_list = []
n_frames_list = []
names = []
for noisy, clean, n_frames, name in batch:
noisy_list.append(torch.tensor(noisy).permute(1, 0)) # [F, T] => [T, F]
clean_list.append(torch.tensor(clean).permute(1, 0)) # [1, T] => [T, 1]
n_frames_list.append(n_frames)
names.append(name)
# seq_list = [(T1, F), (T2, F), ...]
# item.size() must be (T, *)
# return (longest_T, len(seq_list), *)
noisy_list = pad_sequence(noisy_list).permute(1, 2, 0) # ([T1, F], [T2, F], ...) => [T, B, F] => [B, F, T]
clean_list = pad_sequence(clean_list).permute(1, 2, 0) # ([T1, 1], [T2, 1], ...) => [T, B, 1] => [B, 1, T]
return noisy_list, clean_list, n_frames_list, names
train_dataloader = DataLoader(
dataset=initialize_config(config["train_dataset"]),
batch_size=config["train_dataloader"]["batch_size"],
num_workers=config["train_dataloader"]["num_workers"],
shuffle=config["train_dataloader"]["shuffle"],
pin_memory=config["train_dataloader"]["pin_memory"],
collate_fn=collate_fn_pad
)
valid_dataloader = DataLoader(
dataset=initialize_config(config["validation_dataset"]),
num_workers=0,
batch_size=1
)
model = initialize_config(config["model"])
optimizer = torch.optim.Adam(
params=model.parameters(),
lr=config["optimizer"]["lr"],
betas=(config["optimizer"]["beta1"], config["optimizer"]["beta2"])
)
loss_function = initialize_config(config["loss_function"])
trainer_class = initialize_config(config["trainer"], pass_args=False)
trainer = trainer_class(
config=config,
resume=resume,
model=model,
loss_function=loss_function,
optimizer=optimizer,
train_dataloader=train_dataloader,
validation_dataloader=valid_dataloader
)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="CRN")
parser.add_argument("-C", "--configuration", required=True, type=str, help="Configuration (*.json).")
parser.add_argument("-P", "--preloaded_model_path", type=str, help="Path of the *.Pth file of the model.")
parser.add_argument("-R", "--resume", action="store_true", help="Resume experiment from latest checkpoint.")
args = parser.parse_args()
if args.preloaded_model_path:
assert not args.resume, "Resume conflict with preloaded model. Please use one of them."
configuration = json5.load(open(args.configuration))
configuration["experiment_name"], _ = os.path.splitext(os.path.basename(args.configuration))
configuration["config_path"] = args.configuration
configuration["preloaded_model_path"] = args.preloaded_model_path
main(configuration, resume=args.resume)