Documentation of identification of pathogenicity genes in verticillium Note - all this work was performed in the directory: /home/groups/harrisonlab/project_files/verticilium_dahliae/pathogenomics
The following is a summary of the work presented in this Readme.
The following processes were applied to Verticillium genomes prior to analysis: Data qc Genome assembly Repeatmasking Gene prediction Functional annotation
Analyses performed on these genomes involved BLAST searching for:
cd /home/groups/harrisonlab/project_files/verticillium_dahliae/pathogenomics
RawDatDir=/home/harrir/projects/pacbio_test/v_dahliae
OutDir=raw_dna/pacbio/V.dahliae/12008
mkdir -p $OutDir
cp -r $RawDatDir/F04_1 $OutDir/.
cp -r $RawDatDir/G04_1 $OutDir/.
cp -r $RawDatDir/H04_1 $OutDir/.
mkdir -p $OutDir/extracted
cat $OutDir/*/Analysis_Results/*.subreads.fastq > $OutDir/extracted/concatenated_pacbio.fastq
# For new sequencing run
RawDat=/home/groups/harrisonlab/raw_data/raw_seq/raw_reads/160404_M004465_0008-ALVUT
Species="V.dahliae"
Strain="12008"
mkdir -p raw_dna/paired/$Species/$Strain/F
mkdir -p raw_dna/paired/$Species/$Strain/R
cp $RawDat/Vd12008_S1_L001_R1_001.fastq.gz raw_dna/paired/$Species/$Strain/F/.
cp $RawDat/Vd12008_S1_L001_R2_001.fastq.gz raw_dna/paired/$Species/$Strain/R/.
programs: fastqc fastq-mcf kmc
Data quality was visualised using fastqc:
for RawData in $(ls raw_dna/paired/*/*/*/*.fastq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
Trimming was performed on data to trim adapters from sequences and remove poor quality data. This was done with fastq-mcf
Trimming was first performed on the strain that had a single run of data:
for StrainPath in $(ls -d raw_dna/paired/*/*); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/rna_qc
IlluminaAdapters=/home/fanron/git_repos/tools/seq_tools/ncbi_adapters.fa
ReadsF=$(ls $StrainPath/F/*.fastq*)
ReadsR=$(ls $StrainPath/R/*.fastq*)
echo $ReadsF
echo $ReadsR
qsub $ProgDir/rna_qc_fastq-mcf.sh $ReadsF $ReadsR $IlluminaAdapters DNA
done
Data quality was visualised once again following trimming:
for RawData in $(ls qc_dna/paired/*/*/*/*.fq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
for Reads in $(ls raw_dna/pacbio/*/*/extracted/concatenated_pacbio.fastq); do
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/dna_qc
OutDir=$(dirname $Reads)
qsub $ProgDir/sub_count_nuc.sh 35 $Reads $OutDir
done
for Reads in $(ls qc_dna/paired/*/*/*/*_trim.fq.gz); do
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/dna_qc
OutDir=$(dirname $Reads)
qsub $ProgDir/sub_count_nuc.sh 35 $Reads $OutDir
done
The predicted coverage was calculated to be:
# For PacBio data:
for StrainDir in $(ls -d raw_dna/pacbio/*/* ); do
Strain=$(basename $StrainDir)
printf "$Strain\t"
for File in $(ls qc_dna/paired/*/"$Strain"/*/*.txt); do
echo $(basename $File);
cat $File | tail -n1 | rev | cut -f2 -d ' ' | rev;
done | grep -v '.txt' | awk '{ SUM += $1} END { print SUM }'
done
# For illumina data
for StrainDir in $(ls -d qc_dna/paired/*/* ); do
Strain=$(basename $StrainDir)
printf "$Strain\t"
for File in $(ls qc_dna/paired/*/"$Strain"/*/*.txt); do
echo $(basename $File);
cat $File | tail -n1 | rev | cut -f2 -d ' ' | rev;
done | grep -v '.txt' | awk '{ SUM += $1} END { print SUM }'
done
for Reads in $(ls raw_dna/pacbio/*/*/extracted/concatenated_pacbio.fastq); do
GenomeSz="35m"
Strain=$(echo $Reads | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Reads | rev | cut -f4 -d '/' | rev)
Prefix="$Strain"_canu
OutDir="assembly/canu/$Organism/$Strain"
ProgDir=~/git_repos/tools/seq_tools/assemblers/canu
qsub $ProgDir/submit_canu.sh $Reads $GenomeSz $Prefix $OutDir
done
Assembly stats were collected using quast
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/assembly_qc/quast
for Assembly in $(ls assembly/canu/*/*/*_canu.contigs.fasta); do
Strain=$(echo $Assembly | rev | cut -f2 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
OutDir=assembly/canu/$Organism/$Strain/filtered_contigs
qsub $ProgDir/sub_quast.sh $Assembly $OutDir
done
Polish assemblies using Pilon
for Assembly in $(ls assembly/canu/*/*/*_canu.contigs.fasta); do
Organism=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Strain=$(echo $Assembly | rev | cut -f2 -d '/' | rev)
IlluminaDir=$(ls -d qc_dna/paired/$Organism/$Strain)
TrimF1_Read=$(ls $IlluminaDir/F/*_trim.fq.gz);
TrimR1_Read=$(ls $IlluminaDir/R/*_trim.fq.gz);
OutDir=assembly/canu/$Organism/$Strain/polished
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/pilon
qsub $ProgDir/sub_pilon.sh $Assembly $TrimF1_Read $TrimR1_Read $OutDir
done
After investigation, it was found that contigs didnt need to be split.
Assembly stats were collected using quast
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/assembly_qc/quast
for Assembly in $(ls assembly/canu/V.dahliae/12008/polished/pilon.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
OutDir=assembly/canu/$Organism/$Strain/pilon
qsub $ProgDir/sub_quast.sh $Assembly $OutDir
done
Checking PacBio coverage against Canu assembly
Assembly=assembly/canu/V.dahliae/12008/polished/pilon.fasta
Reads=raw_dna/pacbio/V.dahliae/12008/extracted/concatenated_pacbio.fastq
OutDir=analysis/genome_alignment/bwa/Verticillium/12008/vs_12008
ProgDir=/home/fanron/git_repos/tools/seq_tools/genome_alignment/bwa
qsub $ProgDir/sub_bwa_pacbio.sh $Assembly $Reads $OutDir
for PacBioDat in $(ls raw_dna/pacbio/*/*/extracted/concatenated_pacbio.fastq); do
Organism=$(echo $PacBioDat | rev | cut -f4 -d '/' | rev)
Strain=$(echo $PacBioDat | rev | cut -f3 -d '/' | rev)
IlluminaDir=$(ls -d qc_dna/paired/$Organism/$Strain)
TrimF1_Read=$(ls $IlluminaDir/F/*_trim.fq.gz);
TrimR1_Read=$(ls $IlluminaDir/R/*_trim.fq.gz);
OutDir=assembly/spades_pacbio/$Organism/"$Strain"
echo $TrimR1_Read
echo $TrimR1_Read
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/spades
qsub $ProgDir/sub_spades_pacbio.sh $PacBioDat $TrimF1_Read $TrimR1_Read $OutDir 20
done
Contigs shorter thaan 500bp were removed from the assembly
for Contigs in $(ls assembly/spades_pacbio/*/*/contigs.fasta); do
AssemblyDir=$(dirname $Contigs)
mkdir $AssemblyDir/filtered_contigs
FilterDir=/home/armita/git_repos/tools/seq_tools/assemblers/abyss
$FilterDir/filter_abyss_contigs.py $Contigs 500 > $AssemblyDir/filtered_contigs/contigs_min_500bp.fasta
done
Checking PacBio coverage against Spades assembly
Assembly=assembly/spades_pacbio/V.dahliae/12008/filtered_contigs/contigs_min_500bp.fasta
Reads=raw_dna/pacbio/V.dahliae/12008/extracted/concatenated_pacbio.fastq
OutDir=analysis/genome_alignment/bwa/Verticillium/12008/vs_spades_assembly
ProgDir=/home/fanron/git_repos/tools/seq_tools/genome_alignment/bwa
qsub $ProgDir/sub_bwa_pacbio.sh $Assembly $Reads $OutDir
for PacBioAssembly in $(ls assembly/canu/*/*/polished/pilon.fasta); do
Organism=$(echo $PacBioAssembly | rev | cut -f4 -d '/' | rev)
Strain=$(echo $PacBioAssembly | rev | cut -f3 -d '/' | rev)
HybridAssembly=$(ls assembly/spades_pacbio/$Organism/$Strain/contigs.fasta)
AnchorLength=500000
OutDir=assembly/merged_canu_spades/$Organism/"$Strain"
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/assemblers/quickmerge
qsub $ProgDir/sub_quickmerge.sh $PacBioAssembly $HybridAssembly $OutDir $AnchorLength
done
This merged assembly was polished using Pilon
for Assembly in $(ls assembly/merged_canu_spades/*/*/merged.fasta); do
Organism=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Strain=$(echo $Assembly | rev | cut -f2 -d '/' | rev)
IlluminaDir=$(ls -d qc_dna/paired/$Organism/$Strain)
TrimF1_Read=$(ls $IlluminaDir/F/*_trim.fq.gz);
TrimR1_Read=$(ls $IlluminaDir/R/*_trim.fq.gz);
OutDir=assembly/merged_canu_spades/$Organism/$Strain/polished
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/pilon
qsub $ProgDir/sub_pilon.sh $Assembly $TrimF1_Read $TrimR1_Read $OutDir
done
Contigs were renamed in accordance with ncbi recomendations.
ProgDir=~/git_repos/tools/seq_tools/assemblers/assembly_qc/remove_contaminants
touch tmp.csv
for Assembly in $(ls assembly/merged_canu_spades/*/*/polished/pilon.fasta); do
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
OutDir=assembly/merged_canu_spades/$Organism/$Strain/filtered_contigs
mkdir -p $OutDir
$ProgDir/remove_contaminants.py --inp $Assembly --out $OutDir/"$Strain"_contigs_renamed.fasta --coord_file tmp.csv
done
rm tmp.csv
Assembly stats were collected using quast
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/assembly_qc/quast
for Assembly in $(ls assembly/merged_canu_spades/*/*/filtered_contigs/*_contigs_renamed.fasta); do
Strain=$(echo $Assembly | rev | cut -f2 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
OutDir=$(dirname $Assembly)
qsub $ProgDir/sub_quast.sh $Assembly $OutDir
done
Assembly 12008_contigs_renamed
contigs (>= 0 bp) 104
contigs (>= 1000 bp) 104
Total length (>= 0 bp) 35100962
Total length (>= 1000 bp) 35100962
contigs 104
Largest contig 2438101
Total length 35100962
GC (%) 54.53
N50 746680
N75 389743
L50 16
L75 32
N's per 100 kbp 0.00
A Bioproject and Biosample was made with NCBI genbank for submission of genomes. Following the creation of these submissions, the .fasta assembly was uploaded through the submission portal. A note was provided requesting that the assembly be run through the contamination screen to aid a more detailed resubmission in future. The returned FCSreport.txt was downloaded from the NCBI webportal and used to correct the assembly to NCBI standards.
NCBI reports (FCSreport.txt) were manually downloaded to the following loactions:
for Assembly in $(ls assembly/merged_canu_spades/V.dahliae/12008/filtered_contigs/12008_contigs_renamed.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
NCBI_report_dir=genome_submission/$Organism/$Strain/initial_submission
mkdir -p $NCBI_report_dir
done
These downloaded files were used to correct assemblies:
for Assembly in $(ls assembly/merged_canu_spades/V.dahliae/12008/filtered_contigs/12008_contigs_renamed.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
echo "$Organism - $Strain"
NCBI_report=$(ls genome_submission/$Organism/$Strain/initial_submission/FCSreport.txt)
OutDir=assembly/merged_canu_spades/$Organism/$Strain/ncbi_edits
mkdir -p $OutDir
ProgDir=/home/fanron/git_repos/tools/seq_tools/assemblers/assembly_qc/remove_contaminants
$ProgDir/remove_contaminants.py --inp $Assembly --out $OutDir/12008_contigs_renamed.fasta --coord_file $NCBI_report > $OutDir/log.txt
done
Quast was used to collect details on these assemblies again
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/assemblers/assembly_qc/quast
for Assembly in $(ls assembly/merged_canu_spades/*/*/ncbi_edits/12008_contigs_renamed.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
echo "$Organism - $Strain"
OutDir=assembly/merged_canu_spades/$Organism/$Strain/ncbi_edits
qsub $ProgDir/sub_quast.sh $Assembly $OutDir
done
All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
Assembly 12008_contigs_renamed 12008_contigs_renamed broken contigs (>= 0 bp) 103 103 contigs (>= 1000 bp) 103 103 Total length (>= 0 bp) 35057408 35057408 Total length (>= 1000 bp) 35057408 35057408 contigs 103 103 Largest contig 2438101 2438101 Total length 35057408 35057408 GC (%) 54.57 54.57 N50 746680 746680 N75 389743 389743 L50 16 16 L75 32 32 N's per 100 kbp 0.00 0.00
Checking PacBio coverage against merged assembly
Assembly=assembly/merged_canu_spades/V.dahliae/12008/ncbi_edits/12008_contigs_renamed.fasta
Reads=raw_dna/pacbio/V.dahliae/12008/extracted/concatenated_pacbio.fastq
OutDir=analysis/genome_alignment/bwa/Verticillium/12008/ncbi_12008
ProgDir=/home/fanron/git_repos/tools/seq_tools/genome_alignment/bwa
qsub $ProgDir/sub_bwa_pacbio.sh $Assembly $Reads $OutDir
##Repeatmasking
Repeat masking was performed and used the following programs: Repeatmasker Repeatmodeler
The best assemblies were used to perform repeatmasking
ProgDir=/home/fanron/git_repos/tools/seq_tools/repeat_masking
for BestAss in $(ls assembly/merged_canu_spades/*/*/ncbi_edits/12008_contigs_renamed.fasta); do
Organism=$(echo $BestAss | rev | cut -d "/" -f4 | rev)
Strain=$(echo $BestAss | rev | cut -d "/" -f3 | rev)
OutDir=repeat_masked/$Organism/$Strain/ncbi_filtered_contigs_repmask
qsub $ProgDir/rep_modeling.sh $BestAss $OutDir
qsub $ProgDir/transposonPSI.sh $BestAss $OutDir
done
The number of bases masked by transposonPSI and Repeatmasker were summarised using the following commands:
The TransposonPSI masked bases were used to mask additional bases from the repeatmasker / repeatmodeller softmasked and hardmasked files.
for File in $(ls repeat_masked/*/*/ncbi_filtered_contigs_repmask/*_contigs_softmasked.fa); do
OutDir=$(dirname $File)
TPSI=$(ls $OutDir/*_contigs_unmasked.fa.TPSI.allHits.chains.gff3)
OutFile=$(echo $File | sed 's/_contigs_softmasked.fa/_contigs_softmasked_repeatmasker_TPSI_appended.fa/g')
echo "$OutFile"
bedtools maskfasta -soft -fi $File -bed $TPSI -fo $OutFile
echo "Number of masked bases:"
cat $OutFile | grep -v '>' | tr -d '\n' | awk '{print $0, gsub("[a-z]", ".")}' | cut -f2 -d ' '
done
# The number of N's in hardmasked sequence are not counted as some may be present within the assembly and were therefore not repeatmasked.
for File in $(ls repeat_masked/*/*/ncbi_filtered_contigs_repmask/*_contigs_hardmasked.fa); do
OutDir=$(dirname $File)
TPSI=$(ls $OutDir/*_contigs_unmasked.fa.TPSI.allHits.chains.gff3)
OutFile=$(echo $File | sed 's/_contigs_hardmasked.fa/_contigs_hardmasked_repeatmasker_TPSI_appended.fa/g')
echo "$OutFile"
bedtools maskfasta -fi $File -bed $TPSI -fo $OutFile
done
for RepDir in $(ls -d repeat_masked/*/*/ncbi_filtered_contigs_repmask); do
Strain=$(echo $RepDir | rev | cut -f2 -d '/' | rev)
Organism=$(echo $RepDir | rev | cut -f3 -d '/' | rev)
RepMaskGff=$(ls $RepDir/*_contigs_hardmasked.gff)
TransPSIGff=$(ls $RepDir/*_contigs_unmasked.fa.TPSI.allHits.chains.gff3)
# printf "The number of bases masked by RepeatMasker:\t"
RepMaskerBp=$(sortBed -i $RepMaskGff | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}')
# printf "The number of bases masked by TransposonPSI:\t"
TpsiBp=$(sortBed -i $TransPSIGff | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}')
# printf "The total number of masked bases are:\t"
Total=$(cat $RepMaskGff $TransPSIGff | sortBed | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}')
printf "$Organism\t$Strain\t$RepMaskerBp\t$TpsiBp\t$Total\n"
done
V.alfafae VaMs102 399009 51791 448567
V.dahliae 12008 3280336 859780 3372268
V.dahliae JR2 2656875 900826 2887555
V.dahliae Ls17 1280191 448966 1392012
Quality of genome assemblies was assessed by looking for the gene space in the assemblies.
ProgDir=/home/fanron/git_repos/tools/gene_prediction/cegma
cd /home/groups/harrisonlab/project_files/verticillium_dahliae/pathogenomics
for Genome in $(ls repeat_masked/V.*/*/ncbi*/*_contigs_softmasked.fa); do
echo $Genome;
qsub $ProgDir/sub_cegma.sh $Genome dna;
done
*** Number of cegma genes present and complete: 95.56% ** Number of cegma genes present and partial: 98.39%
ProgDir=/home/fanron/git_repos/tools/gene_prediction/cegma
cd /home/groups/harrisonlab/project_files/verticillium_dahliae/pathogenomics
for Genome in $(ls repeat_masked/V.*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa); do
echo $Genome;
qsub $ProgDir/sub_cegma.sh $Genome dna;
done
Number of cegma genes present and complete: 95.56% Number of cegma genes present and partial: 98.39%
Outputs were summarised using the commands:
for File in $(ls gene_pred/cegma/V.*/12008/*_dna_cegma.completeness_report); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev);
Species=$(echo $File | rev | cut -f3 -d '/' | rev);
printf "$Species\t$Strain\n";
cat $File | head -n18 | tail -n+4;printf "\n";
done > gene_pred/cegma/cegma_results_dna_summary.txt
less gene_pred/cegma/cegma_results_dna_summary.txt
# These results are based on the set of genes selected by Genis Parra #
# Key: #
# Prots = number of 248 ultra-conserved CEGs present in genome #
# %Completeness = percentage of 248 ultra-conserved CEGs present #
# Total = total number of CEGs present including putative orthologs #
# Average = average number of orthologs per CEG #
# %Ortho = percentage of detected CEGS that have more than 1 ortholog #
There are 237 complete and 7 partial core eukaryotic genes (out of total 248 genes) present in my assembly
Busco has replaced CEGMA and was run to check gene space in assemblies
for Assembly in $(ls repeat_masked/V.*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/busco
BuscoDB=$(ls -d /home/groups/harrisonlab/dbBusco/sordariomyceta_odb9)
OutDir=gene_pred/busco/$Organism/$Strain/assembly_ncbi
# OutDir=../tmp/gene_pred/busco/$Organism/$Strain/assembly
# qsub $ProgDir/sub_busco2.sh $Assembly $BuscoDB $OutDir
qsub $ProgDir/sub_busco3.sh $Assembly $BuscoDB $OutDir
done
for File in $(ls ../tmp/gene_pred/busco/*/*/assembly/*/short_summary_*.txt); do
Strain=$(echo $File| rev | cut -d '/' -f4 | rev)
Organism=$(echo $File | rev | cut -d '/' -f5 | rev)
Complete=$(cat $File | grep "(C)" | cut -f2)
Fragmented=$(cat $File | grep "(F)" | cut -f2)
Duplicated=$(cat $File | grep "(D)" | cut -f2)
Missing=$(cat $File | grep "(M)" | cut -f2)
Total=$(cat $File | grep "Total" | cut -f2)
echo -e "$Organism\t$Strain\t$Complete\t$Fragmented\t$Duplicated\t$Missing\t$Total"
done
make folders for RNA_seq data
mkdir -p raw_rna/paired/V.dahiae/12008PDA/F mkdir -p raw_rna/paired/V.dahiae/12008PDA/R mkdir -p raw_rna/paired/V.dahiae/12008CD/F mkdir -p raw_rna/paired/V.dahiae/12008CD/R
Copy raw RNA_seq data from miseq_data folder to pathogenomic folder
This contained the following data:
12008PDA
12008-PDA_S2_L001_R1_001.fastq.gz 12008-PDA_S2_L001_R2_001.fastq.gz
12008-PDA_S2_L001_R1_001.fastq 12008-PDA_S2_L001_R2_001.fastq
12008CD
12008-CD_S1_L001_R1_001.fastq.gz 12008-CD_S1_L001_R2_001.fastq.gz
12008-CD_S1_L001_R1_001.fastq 12008-CD_S1_L001_R2_001.fastq
Perform qc of RNAseq data
for FilePath in $(ls -d raw_rna/paired/V.*/12008PDA); do
echo $FilePath;
FileF=$(ls $FilePath/F/*.gz);
FileR=$(ls $FilePath/R/*.gz);
IlluminaAdapters=/home/fanron/git_repos/tools/seq_tools/ncbi_adapters.fa; ProgDir=/home/fanron/git_repos/tools/seq_tools/rna_qc;
qsub $ProgDir/rna_qc_fastq-mcf.sh $FileF $FileR $IlluminaAdapters RNA;
done
for FilePath in $(ls -d raw_rna/paired/V.*/12008CD); do
echo $FilePath;
FileF=$(ls $FilePath/F/*.gz);
FileR=$(ls $FilePath/R/*.gz);
IlluminaAdapters=/home/fanron/git_repos/tools/seq_tools/ncbi_adapters.fa; ProgDir=/home/fanron/git_repos/tools/seq_tools/rna_qc;
qsub $ProgDir/rna_qc_fastq-mcf.sh $FileF $FileR $IlluminaAdapters RNA;
done
Data quality was visualised using fastqc:
for RawData in $(ls qc_rna/paired/V.*/12008PDA/R/*.fq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
for RawData in $(ls qc_rna/paired/V.*/12008PDA/F/*.fq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
for RawData in $(ls qc_rna/paired/V.*/12008CD/R/*.fq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
for RawData in $(ls qc_rna/paired/V.*/12008CD/F/*.fq.gz); do
ProgDir=/home/fanron/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
for Assembly in $(ls repeat_masked/*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa | grep '12008'); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
for FileF in $(ls qc_rna/paired/*/*/F/*_trim.fq.gz); do
FileR=$(echo $FileF | sed 's&/F/&/R/&g' | sed 's/R1/R2/g')
echo $FileF
echo $FileR
Prefix=$(echo $FileF | rev | cut -f3 -d '/' | rev)
# Timepoint=$(echo $FileF | rev | cut -f2 -d '/' | rev)
Timepoint="treatment"
#echo "$Timepoint"
OutDir=alignment/star/$Organism/$Strain/$Timepoint/$Prefix
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/RNAseq
qsub $ProgDir/sub_star.sh $Assembly $FileF $FileR $OutDir
done
done
Accepted hits .bam file were concatenated and indexed for use for gene model training:
for OutDir in $(ls -d alignment/star/*/* | grep '12008'); do
Strain=$(echo $OutDir | rev | cut -d '/' -f1 | rev)
Organism=$(echo $OutDir | rev | cut -d '/' -f2 | rev)
echo "$Organism - $Strain"
# For all alignments
BamFiles=$(ls $OutDir/treatment/*/*.sortedByCoord.out.bam | tr -d '\n' | sed 's/.bam/.bam /g')
mkdir -p $OutDir/treatment/concatenated
samtools merge -f $OutDir/treatment/concatenated/concatenated.bam $BamFiles
done
Before braker predictiction was performed, I double checked that I had the genemark key in my user area and copied it over from the genemark install directory:
ls ~/.gm_key
cp /home/armita/prog/genemark/gm_key_64 ~/.gm_key
Braker predictiction was performed using softmasked genome, not unmasked one.
for Assembly in $(ls repeat_masked/*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa | grep '12008'); do
Jobs=$(qstat | grep 'tophat' | grep -w 'r' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'tophat' | grep -w 'r' | wc -l)
done
printf "\n"
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
OutDir=gene_pred/braker/$Organism/"$Strain"_publication2
AcceptedHits=$(ls alignment/star//$Organism/$Strain/treatment/concatenated/concatenated.bam)
GeneModelName="$Organism"_"$Strain"_publication
rm -r /home/armita/prog/augustus-3.1/config/species/$GeneModelName
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/braker1
qsub $ProgDir/sub_braker_fungi.sh $Assembly $OutDir $AcceptedHits $GeneModelName
done
####Amino acid sequences and gff files were extracted from Braker1 output.
for File in $(ls gene_pred/braker/V.dahliae/12008_publication/*/augustus.gff); do
getAnnoFasta.pl $File
OutDir=$(dirname $File)
echo "##gff-version 3" > $OutDir/augustus_extracted.gff
cat $File | grep -v '#' >> $OutDir/augustus_extracted.gff
done
The relationship between gene models and aligned reads was investigated. To do this aligned reads needed to be sorted and indexed:
Note - IGV was used to view aligned reads against the 12008 genome on my local machine.
InBam=alignment/V.dahliae/12008/concatenated/concatenated.bam
ViewBam=alignment/V.dahliae/12008/concatenated/concatenated_view.bam
SortBam=alignment/V.dahliae/12008/concatenated/concatenated_sorted
samtools view -b $InBam > $ViewBam
samtools sort $ViewBam $SortBam
samtools index $SortBam.bam
Additional genes were added to Braker gene predictions, using CodingQuary in pathogen mode to predict additional regions.
Fistly, aligned RNAseq data was assembled into transcripts using Cufflinks.
Note - cufflinks doesn't always predict direction of a transcript and therefore features can not be restricted by strand when they are intersected.
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
OutDir=gene_pred/cufflinks/$Organism/$Strain/concatenated_prelim
mkdir -p $OutDir
AcceptedHits=alignment/$Organism/$Strain/concatenated/concatenated.bam
ProgDir=/home/fanron/git_repos/tools/seq_tools/RNAseq
qsub $ProgDir/sub_cufflinks.sh $AcceptedHits $OutDir
done
Secondly, genes were predicted using CodingQuary:
for Assembly in $(ls repeat_masked/*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa | grep -e '51' -e '53' -e '58' -e '61'); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
OutDir=gene_pred/codingquary1/$Organism/$Strain
CufflinksGTF=gene_pred/cufflinks/$Organism/$Strain/concatenated_prelim/transcripts.gtf
ProgDir=/home/fanron/git_repos/tools/gene_prediction/codingquary
qsub $ProgDir/sub_CodingQuary.sh $Assembly $CufflinksGTF $OutDir
done
Then, additional transcripts were added to Braker gene models, when CodingQuary genes were predicted in regions of the genome, not containing Braker gene models:
for BrakerGff in $(ls gene_pred/braker/*/*/*/augustus.gff3 | grep -v '12008'); do
Strain=$(echo $BrakerGff| rev | cut -d '/' -f3 | rev)
Organism=$(echo $BrakerGff | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
Assembly=$(ls repeat_masked/$Organism/$Strain/*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa)
CodingQuaryGff=gene_pred/codingquary1/$Organism/$Strain/out/PredictedPass.gff3
PGNGff=gene_pred/codingquary1/$Organism/$Strain/out/PGN_predictedPass.gff3
AddDir=gene_pred/codingquary1/$Organism/$Strain/additional
FinalDir=gene_pred/final_genes/$Organism/$Strain/final
AddGenesList=$AddDir/additional_genes.txt
AddGenesGff=$AddDir/additional_genes.gff
FinalGff=$AddDir/combined_genes.gff
mkdir -p $AddDir
mkdir -p $FinalDir
bedtools intersect -v -a $CodingQuaryGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' > $AddGenesList
bedtools intersect -v -a $PGNGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' >> $AddGenesList
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation
$ProgDir/gene_list_to_gff.pl $AddGenesList $CodingQuaryGff CodingQuarry_v2.0 ID CodingQuary > $AddGenesGff
$ProgDir/gene_list_to_gff.pl $AddGenesList $PGNGff PGNCodingQuarry_v2.0 ID CodingQuary >> $AddGenesGff
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/codingquary
$ProgDir/add_CodingQuary_features.pl $AddGenesGff $Assembly > $FinalDir/final_genes_CodingQuary.gff3
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_CodingQuary.gff3 $FinalDir/final_genes_CodingQuary
cp $BrakerGff $FinalDir/final_genes_Braker.gff3
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_Braker.gff3 $FinalDir/final_genes_Braker
cat $FinalDir/final_genes_Braker.pep.fasta $FinalDir/final_genes_CodingQuary.pep.fasta | sed -r 's/\*/X/g' > $FinalDir/final_genes_combined.pep.fasta
cat $FinalDir/final_genes_Braker.cdna.fasta $FinalDir/final_genes_CodingQuary.cdna.fasta > $FinalDir/final_genes_combined.cdna.fasta
cat $FinalDir/final_genes_Braker.gene.fasta $FinalDir/final_genes_CodingQuary.gene.fasta > $FinalDir/final_genes_combined.gene.fasta
cat $FinalDir/final_genes_Braker.upstream3000.fasta $FinalDir/final_genes_CodingQuary.upstream3000.fasta > $FinalDir/final_genes_combined.upstream3000.fasta
GffBraker=$FinalDir/final_genes_CodingQuary.gff3
GffQuary=$FinalDir/final_genes_Braker.gff3
GffAppended=$FinalDir/final_genes_appended.gff3
cat $GffBraker $GffQuary > $GffAppended
done
Then, additional transcripts were added to Braker gene models, when CodingQuary genes were predicted in regions of the genome, not containing Braker gene models:
Note - Ensure that the "TPSI_appended.fa" assembly file is correct.
for BrakerGff in $(ls gene_pred/braker/*/*/*_publication/augustus.gff3 | grep '12008'); do
Strain=$(echo $BrakerGff| rev | cut -d '/' -f3 | rev | sed 's/_publication//g')
Organism=$(echo $BrakerGff | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
Assembly=$(ls repeat_masked/$Organism/$Strain/ncbi_filtered_contigs_repmask/*_softmasked_repeatmasker_TPSI_appended.fa)
CodingQuaryGff=gene_pred/codingquary1/$Organism/$Strain/out/PredictedPass.gff3
PGNGff=gene_pred/codingquary1/$Organism/$Strain/out/PGN_predictedPass.gff3
AddDir=gene_pred/codingquary1/$Organism/$Strain/additional
FinalDir=gene_pred/final/$Organism/$Strain/final
AddGenesList=$AddDir/additional_genes.txt
AddGenesGff=$AddDir/additional_genes.gff
FinalGff=$AddDir/combined_genes.gff
mkdir -p $AddDir
mkdir -p $FinalDir
bedtools intersect -v -a $CodingQuaryGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' > $AddGenesList
bedtools intersect -v -a $PGNGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' >> $AddGenesList
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation
$ProgDir/gene_list_to_gff.pl $AddGenesList $CodingQuaryGff CodingQuarry_v2.0 ID CodingQuary > $AddGenesGff
$ProgDir/gene_list_to_gff.pl $AddGenesList $PGNGff PGNCodingQuarry_v2.0 ID CodingQuary >> $AddGenesGff
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/codingquary
# -
# This section is edited
$ProgDir/add_CodingQuary_features.pl $AddGenesGff $Assembly > $AddDir/add_genes_CodingQuary_unspliced.gff3
$ProgDir/correct_CodingQuary_splicing.py --inp_gff $AddDir/add_genes_CodingQuary_unspliced.gff3 > $FinalDir/final_genes_CodingQuary.gff3
# -
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_CodingQuary.gff3 $FinalDir/final_genes_CodingQuary
cp $BrakerGff $FinalDir/final_genes_Braker.gff3
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_Braker.gff3 $FinalDir/final_genes_Braker
cat $FinalDir/final_genes_Braker.pep.fasta $FinalDir/final_genes_CodingQuary.pep.fasta | sed -r 's/\*/X/g' > $FinalDir/final_genes_combined.pep.fasta
cat $FinalDir/final_genes_Braker.cdna.fasta $FinalDir/final_genes_CodingQuary.cdna.fasta > $FinalDir/final_genes_combined.cdna.fasta
cat $FinalDir/final_genes_Braker.gene.fasta $FinalDir/final_genes_CodingQuary.gene.fasta > $FinalDir/final_genes_combined.gene.fasta
cat $FinalDir/final_genes_Braker.upstream3000.fasta $FinalDir/final_genes_CodingQuary.upstream3000.fasta > $FinalDir/final_genes_combined.upstream3000.fasta
GffBraker=$FinalDir/final_genes_Braker.gff3
GffQuary=$FinalDir/final_genes_CodingQuary.gff3
GffAppended=$FinalDir/final_genes_appended.gff3
cat $GffBraker $GffQuary > $GffAppended
done
In preperation for submission to ncbi, gene models were renamed and duplicate gene features were identified and removed.
- no duplicate genes were identified
Augustus was noted to predict a gene within another gene on the reverse strand.
As such this gene was removed manually:
for GffAppended in $(ls gene_pred/final/*/*/final/final_genes_appended.gff3 | grep '12008'); do
Strain=$(echo $GffAppended | rev | cut -d '/' -f3 | rev)
Organism=$(echo $GffAppended | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
FinalDir=gene_pred/final/$Organism/$Strain/final
GffFiltered=$FinalDir/filtered_duplicates.gff
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/codingquary
$ProgDir/remove_dup_features.py --inp_gff $GffAppended --out_gff $GffFiltered
GffRenamed=$FinalDir/final_genes_appended_renamed.gff3
LogFile=$FinalDir/final_genes_appended_renamed.log
ProgDir=/home/armita/git_repos/emr_repos/tools/gene_prediction/codingquary
$ProgDir/gff_rename_genes.py --inp_gff $GffFiltered --conversion_log $LogFile > $GffRenamed
rm $GffFiltered
Assembly=$(ls repeat_masked/$Organism/$Strain/ncbi_filtered_contigs_repmask/*_softmasked_repeatmasker_TPSI_appended.fa)
$ProgDir/gff2fasta.pl $Assembly $GffRenamed gene_pred/final/$Organism/$Strain/final/final_genes_appended_renamed
# The proteins fasta file contains * instead of Xs for stop codons, these should
# be changed
sed -i 's/\*/X/g' gene_pred/final/$Organism/$Strain/final/final_genes_appended_renamed.pep.fasta
done
for Gff in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.gff3); do
Strain=$(echo $Gff | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Gff | rev | cut -f4 -d '/' | rev)
echo "$Organism - $Strain"
cat $Gff | grep -w 'gene' | wc -l
done
V.dahliae - 12008 10486 V.dahliae - 51 10294 V.dahliae - 53 10330 V.dahliae - 58 9925 V.dahliae - 61 9934
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
echo "$Organism - $Strain"
cat $Proteome | grep '>' | wc -l
done
V.dahliae - 12008 10634 V.dahliae - 51 10387 V.dahliae - 53 10434 V.dahliae - 58 10003 V.dahliae - 61 10007
#Functional annotation
Functional annotation was run on isolate 12008 as well as the reseqeunced isolates run as part of the verticillium clocks project. To do this, those gene models were copied into this project directory:
cp -r ../clocks/gene_pred/final/V.dahliae/* gene_pred/final/V.dahliae/.
Interproscan was used to give gene models functional annotations. Annotation was run using the commands below:
Note: This is a long-running script. As such, these commands were run using 'screen' to allow jobs to be submitted and monitored in the background. This allows the session to be disconnected and reconnected over time.
Screen ouput detailing the progress of submission of interporscan jobs was redirected to a temporary output file named interproscan_submission.log .
screen -a
cd /home/groups/harrisonlab/project_files/verticillium_dahliae/pathogenomics
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation/interproscan
# for Genes in $(ls gene_pred/codingquary1/V.*/*/*/final_genes_combined.pep.fasta); do
for Genes in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta | grep -w '12008'); do
echo $Genes
$ProgDir/sub_interproscan.sh $Genes
done 2>&1 | tee -a interproscan_submisison.log
Following interproscan annotation split files were combined using the following commands:
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation/interproscan
for Proteins in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteins | rev | cut -d '/' -f3 | rev)
Organism=$(echo $Proteins | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
echo $Strain
InterProRaw=gene_pred/interproscan/$Organism/$Strain/raw
$ProgDir/append_interpro.sh $Proteins $InterProRaw
done
The number of NPP-like proteins
for InterPro in $(ls gene_pred/interproscan/*/*/*_interproscan.tsv); do
Organism=$(echo $InterPro | rev | cut -d '/' -f3 | rev)
Strain=$(echo $InterPro | rev | cut -d '/' -f2 | rev)
echo "$Organism - $Strain"
cat $InterPro | grep 'NPP' | cut -f1 | sort | uniq | wc -l
done
V.alfafae - VaMs102
8
V.dahliae - 12008
7
V.dahliae - 51
7
V.dahliae - 53
7
V.dahliae - 58
7
V.dahliae - 61
8
V.dahliae - JR2
7
V.dahliae - Ls17
9
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta | grep '12008'); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
OutDir=gene_pred/swissprot/$Organism/$Strain
SwissDbDir=../../uniprot/swissprot
SwissDbName=uniprot_sprot
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation/swissprot
qsub $ProgDir/sub_swissprot.sh $Proteome $OutDir $SwissDbDir $SwissDbName
done
Putative pathogenicity and effector related genes were identified within Braker gene models using a number of approaches:
- A) From Augustus gene models - Identifying secreted proteins
- B) From Augustus gene models - Effector identification using EffectorP
Required programs:
- SignalP-4.1
- TMHMM
Proteins that were predicted to contain signal peptides were identified using the following commands:
SplitfileDir=/home/fanron/git_repos/tools/seq_tools/feature_annotation/signal_peptides
ProgDir=/home/fanron/git_repos/tools/seq_tools/feature_annotation/signal_peptides
CurPath=$PWD
# for Proteome in $(ls gene_pred/codingquary1/V.*/*/*/final_genes_combined.pep.fasta); do
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
SplitDir=gene_pred/final_genes_split/$Organism/$Strain
mkdir -p $SplitDir
BaseName="$Organism""_$Strain"_final_preds
$SplitfileDir/splitfile_500.py --inp_fasta $Proteome --out_dir $SplitDir --out_base $BaseName
for File in $(ls $SplitDir/*_final_preds_*); do
Jobs=$(qstat | grep 'pred_sigP' | wc -l)
while [ $Jobs -gt 20 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'pred_sigP' | wc -l)
done
printf "\n"
echo $File
qsub $ProgDir/pred_sigP.sh $File signalp-4.1
done
done
The batch files of predicted secreted proteins needed to be combined into a single file for each strain. This was done with the following commands:
for SplitDir in $(ls -d gene_pred/final_genes_split/*/*); do
Strain=$(echo $SplitDir | rev |cut -d '/' -f1 | rev)
Organism=$(echo $SplitDir | rev |cut -d '/' -f2 | rev)
echo "$Organism - $Strain"
InStringAA=''
InStringNeg=''
InStringTab=''
InStringTxt=''
SigpDir=final_genes_signalp-4.1
for GRP in $(ls -l $SplitDir/*_final_preds_*.fa | rev | cut -d '_' -f1 | rev | sort -n); do
InStringAA="$InStringAA gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.aa";
InStringNeg="$InStringNeg gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp_neg.aa";
InStringTab="$InStringTab gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.tab";
InStringTxt="$InStringTxt gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.txt";
done
cat $InStringAA > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.aa
cat $InStringNeg > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_neg_sp.aa
tail -n +2 -q $InStringTab > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.tab
cat $InStringTxt > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.txt
done
Some proteins that are incorporated into the cell membrane require secretion. Therefore proteins with a transmembrane domain are not likely to represent cytoplasmic or apoplastic effectors.
Proteins containing a transmembrane domain were identified:
# for Proteome in $(ls gene_pred/codingquary1/*/*/*/final_genes_combined.pep.fasta); do
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
ProgDir=/home/fanron/git_repos/tools/seq_tools/feature_annotation/transmembrane_helices
qsub $ProgDir/submit_TMHMM.sh $Proteome
done
Those proteins with transmembrane domains were removed from lists of Signal peptide containing proteins
for File in $(ls gene_pred/trans_mem/*/*/*_TM_genes_neg.txt); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
TmHeaders=$(echo "$File" | sed 's/neg.txt/neg_headers.txt/g')
cat $File | cut -f1 > $TmHeaders
SigP=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/*_final_sp.aa)
OutDir=$(dirname $SigP)
ProgDir=/home/fanron/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_from_fasta.py --fasta $SigP --headers $TmHeaders > $OutDir/"$Strain"_final_sp_no_trans_mem.aa
cat $OutDir/"$Strain"_final_sp_no_trans_mem.aa | grep '>' | wc -l
done
V.alfafae - VaMs102 866 V.dahliae - 12008 941 V.dahliae - 51 931 V.dahliae - 53 940 V.dahliae - 58 913 V.dahliae - 61 914 V.dahliae - JR2 867 V.dahliae - Ls17 908
Required programs:
- EffectorP.py
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
BaseName="$Organism"_"$Strain"_EffectorP
OutDir=analysis/effectorP/$Organism/$Strain
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation/fungal_effectors
qsub $ProgDir/pred_effectorP.sh $Proteome $BaseName $OutDir
done
Those genes that were predicted as secreted and tested positive by effectorP were identified:
for File in $(ls analysis/effectorP/*/*/*_EffectorP.txt | grep -e '12008' -e '51' -e '53' -e '58' -e '61'); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
Headers=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_headers.txt/g')
cat $File | grep 'Effector' | cut -f1 > $Headers
Secretome=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/*_final_sp_no_trans_mem.aa)
OutFile=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted.aa/g')
ProgDir=/home/fanron/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_from_fasta.py --fasta $Secretome --headers $Headers > $OutFile
OutFileHeaders=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted_headers.txt/g')
cat $OutFile | grep '>' | tr -d '>' > $OutFileHeaders
cat $OutFileHeaders | wc -l
Gff=$(ls gene_pred/final/*/$Strain/*/final_genes_appended_renamed.gff3)
EffectorP_Gff=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted.gff/g')
ProgDir=/home/fanron/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_gff_for_sigP_hits.pl $OutFileHeaders $Gff effectorP ID > $EffectorP_Gff
done
V.dahliae - 12008 190 V.dahliae - 51 190 V.dahliae - 53 196 V.dahliae - 58 186 V.dahliae - 61 189
Carbohydrte active enzymes were idnetified using CAZYfollowing recomendations at http://csbl.bmb.uga.edu/dbCAN/download/readme.txt :
for Proteome in $(ls gene_pred/final/*/*/final/final_genes_appended_renamed.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
OutDir=gene_pred/CAZY/$Organism/$Strain
mkdir -p $OutDir
Prefix="$Strain"_CAZY
CazyHmm=../../../dbCAN/dbCAN-fam-HMMs.txt
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/feature_annotation/HMMER
qsub $ProgDir/sub_hmmscan.sh $CazyHmm $Proteome $Prefix $OutDir
done
The Hmm parser was used to filter hits by an E-value of E1x10-5 or E 1x10-e3 if they had a hit over a length of X %.
Those proteins with a signal peptide were extracted from the list and gff files representing these proteins made.
for File in $(ls gene_pred/CAZY/*/*/*CAZY.out.dm | grep -e '12008' -e '51' -e '53' -e '58' -e '61'); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
OutDir=$(dirname $File)
echo "$Organism - $Strain"
ProgDir=/home/groups/harrisonlab/dbCAN
$ProgDir/hmmscan-parser.sh $File > $OutDir/"$Strain"_CAZY.out.dm.ps
SecretedProts=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/"$Strain"_final_sp_no_trans_mem.aa)
SecretedHeaders=$(echo $SecretedProts | sed 's/.aa/_headers.txt/g')
cat $SecretedProts | grep '>' | tr -d '>' > $SecretedHeaders
Gff=$(ls gene_pred/final/*/$Strain/*/final_genes_appended_renamed.gff3)
CazyGff=$OutDir/"$Strain"_CAZY.gff
ProgDir=/home/fanron/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_gff_for_sigP_hits.pl $SecretedHeaders $Gff CAZyme ID > $CazyGff
done
for File in $(ls gene_pred/CAZY/*/*/*CAZY.out.dm | grep -e '12008' -e '51' -e '53' -e '58' -e '61'); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
OutDir=$(dirname $File)
echo "$Organism - $Strain"
ProgDir=/home/groups/harrisonlab/dbCAN
$ProgDir/hmmscan-parser.sh $OutDir/"$Strain"_CAZY.out.dm > $OutDir/"$Strain"_CAZY.out.dm.ps
CazyHeaders=$(echo $File | sed 's/.out.dm/_headers.txt/g')
cat $OutDir/"$Strain"_CAZY.out.dm.ps | cut -f3 | sort | uniq > $CazyHeaders
echo "number of CAZY genes identified:"
cat $CazyHeaders | wc -l
Gff=$(ls gene_pred/final/*/$Strain/*/final_genes_appended_renamed.gff3)
CazyGff=$OutDir/"$Strain"_CAZY.gff
ProgDir=/home/fanron/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_gff_for_sigP_hits.pl $CazyHeaders $Gff CAZyme ID > $CazyGff
SecretedProts=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/"$Strain"_final_sp_no_trans_mem.aa)
SecretedHeaders=$(echo $SecretedProts | sed 's/.aa/_headers.txt/g')
cat $SecretedProts | grep '>' | tr -d '>' > $SecretedHeaders
CazyGffSecreted=$OutDir/"$Strain"_CAZY_secreted.gff
$ProgDir/extract_gff_for_sigP_hits.pl $SecretedHeaders $CazyGff Secreted_CAZyme ID > $CazyGffSecreted
echo "number of Secreted CAZY genes identified:"
cat $CazyGffSecreted | grep -w 'mRNA' | cut -f9 | tr -d 'ID=' | cut -f1 -d ';' > $OutDir/"$Strain"_CAZY_secreted_headers.txt
cat $OutDir/"$Strain"_CAZY_secreted_headers.txt | wc -l
done
V.dahliae - 12008
number of CAZY genes identified:
627
number of Secreted CAZY genes identified:
298
V.dahliae - 51
number of CAZY genes identified:
627
number of Secreted CAZY genes identified:
298
V.dahliae - 53
number of CAZY genes identified:
634
number of Secreted CAZY genes identified:
306
V.dahliae - 58
number of CAZY genes identified:
627
number of Secreted CAZY genes identified:
301
V.dahliae - 61
number of CAZY genes identified:
626
number of Secreted CAZY genes identified:
305
The number of LysM containing proteins were identified based upon annotation from CBM50.hmm models
for Cazy in $(ls gene_pred/CAZY/V.*/*/*_CAZY.out.dm | grep '12008'); do
Strain=$(echo $Cazy | rev | cut -f2 -d '/' | rev)
Organism=$(echo $Cazy | rev | cut -f3 -d '/' | rev)
OutDir=$(dirname $Cazy)
cat $Cazy | grep 'CBM50.hmm' | sed -r "s/ +/\t/g" | cut -f4 | sort | uniq > $OutDir/LysM_headers.txt
Lysm=$(cat $OutDir/LysM_headers.txt | wc -l)
Secreted=$(cat $OutDir/"$Strain"_CAZY_secreted_headers.txt | grep -w -f $OutDir/LysM_headers.txt)
printf "$Organism\t$Strain\t$Lysm\t$Secreted\n"
done
V.alfafae VaMs102 7 2
V.dahliae 12008 7 4
V.dahliae 51 7 3
V.dahliae 53 7 3
V.dahliae 58 7 3
V.dahliae 61 7 3
V.dahliae JR2 7 4
V.dahliae Ls17 8 1
for file in $(ls gene_pred/CAZY/V.*/*/onlinesigp_result.txt); do
Strain=$(echo $file | rev | cut -d '/' -f2 | rev)
Organism=$(echo $file | rev | cut -d '/' -f3 | rev)
echo "$Organism - $Strain"
cat $file | grep 'CE' | wc -l
done
Note - the CAZY genes identified may need further filtering based on e value and cuttoff length - see below:
Cols in yourfile.out.dm.ps:
- Family HMM
- HMM length
- Query ID
- Query length
- E-value (how similar to the family HMM)
- HMM start
- HMM end
- Query start
- Query end
- Coverage
-
For fungi, use E-value < 1e-17 and coverage > 0.45
-
The best threshold varies for different CAZyme classes (please see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132414/ for details). Basically to annotate GH proteins, one should use a very relax coverage cutoff or the sensitivity will be low (Supplementary Tables S4 and S9); (ii) to annotate CE families a very stringent E-value cutoff and coverage cutoff should be used; otherwise the precision will be very low due to a very high false positive rate (Supplementary Tables S5 and S10)
Small secreted cysteine rich proteins were identified within secretomes. These proteins may be identified by EffectorP, but this approach allows direct control over what constitutes a SSCP.
for Secretome in $(ls gene_pred/final_genes_signalp-4.1/*/*/*_final_sp_no_trans_mem.aa | grep -e '12008' -e '51' -e '53' -e '58' -e '61'); do
Strain=$(echo $Secretome| rev | cut -f2 -d '/' | rev)
Organism=$(echo $Secretome | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
OutDir=analysis/sscp/$Organism/$Strain
mkdir -p $OutDir
ProgDir=/home/armita/git_repos/emr_repos/tools/pathogen/sscp
$ProgDir/sscp_filter.py --inp_fasta $Secretome --max_length 300 --threshold 3 --out_fasta $OutDir/"$Strain"_sscp_all_results.fa
cat $OutDir/"$Strain"_sscp_all_results.fa | grep 'Yes' > $OutDir/"$Strain"_sscp.fa
echo "Number of effectors predicted by EffectorP:"
EffectorP=$(ls analysis/effectorP/$Organism/$Strain/*_EffectorP_secreted_headers.txt)
cat $EffectorP | wc -l
echo "Number of SSCPs predicted by both effectorP and this approach"
cat $OutDir/"$Strain"_sscp.fa | grep '>' | tr -d '>' > $OutDir/"$Strain"_sscp_headers.txt
cat $OutDir/"$Strain"_sscp_headers.txt $EffectorP | cut -f1 | sort | uniq -d | wc -l
echo "Total number of effector-like proteins:"
cat $OutDir/"$Strain"_sscp_headers.txt $EffectorP | cut -f1 | sort | uniq > $OutDir/"$Strain"_sscp_effectorP_headers.txt
cat $OutDir/"$Strain"_sscp_effectorP_headers.txt | wc -l
done
V.dahliae - 12008
% cysteine content threshold set to: 3
maximum length set to: 300
No. short-cysteine rich proteins in input fasta: 135
Number of effectors predicted by EffectorP:
190
Number of SSCPs predicted by both effectorP and this approach
91
Total number of effector-like proteins:
234
V.dahliae - 51
% cysteine content threshold set to: 3
maximum length set to: 300
No. short-cysteine rich proteins in input fasta: 136
Number of effectors predicted by EffectorP:
190
Number of SSCPs predicted by both effectorP and this approach
88
Total number of effector-like proteins:
238
V.dahliae - 53
% cysteine content threshold set to: 3
maximum length set to: 300
No. short-cysteine rich proteins in input fasta: 140
Number of effectors predicted by EffectorP:
196
Number of SSCPs predicted by both effectorP and this approach
93
Total number of effector-like proteins:
243
V.dahliae - 58
% cysteine content threshold set to: 3
maximum length set to: 300
No. short-cysteine rich proteins in input fasta: 125
Number of effectors predicted by EffectorP:
186
Number of SSCPs predicted by both effectorP and this approach
85
Total number of effector-like proteins:
226
V.dahliae - 61
% cysteine content threshold set to: 3
maximum length set to: 300
No. short-cysteine rich proteins in input fasta: 126
Number of effectors predicted by EffectorP:
189
Number of SSCPs predicted by both effectorP and this approach
87
Total number of effector-like proteins:
228
##E) AntiSMASH
Do it in the website: http://antismash.secondarymetabolites.org/
for Assembly in $(ls repeat_masked/*/*/ncbi*/*_contigs_softmasked_repeatmasker_TPSI_appended.fa); do
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
OutDir=analysis/antismash/$Organism/$Strain
mkdir -p $OutDir
done
for Zip in $(ls analysis/antismash/*/*/Vd_12008_contig_1-2.zip); do
OutDir=$(dirname $Zip)
unzip -d $OutDir $Zip
done
##F)Identifying PHIbase homologs
The PHIbase database was searched against the assembled genomes using tBLASTx. The default output location is:
analysis/blast_homology/V.dahliae/*/*_PHI_accessions.fa_homologs.csv
# mkdir -p blast_homology/PHIbase
# cp ../fusarium/analysis/blast_homology/PHIbase/PHI_36_accessions.fa analysis/blast_homology/PHIbase/PHI_36_accessions.fa
for Assembly in $(ls repeat_masked/*/61/ncbi*/*_contigs_unmasked.fa); do
# Version 4.2 October 3rd 2016
Version=v4.2
DbDir=$(ls -d ../../../phibase/$Version)
ProgDir=/home/fanron/git_repos/tools/pathogen/blast
qsub $ProgDir/blast_pipe.sh $DbDir/PHI_accessions.fa protein $Assembly
done
cat analysis/blast_homology/V.dahliae/12008/12008_PHI_accessions.fa_homologs.csv | cut -f1,577- | less -S cat analysis/blast_homology/V.dahliae/12008/12008_PHI_accessions.fa_homologs.csv | cut -f1,575- > cat analysis/blast_homology/V.dahliae/12008/12008_PHI.csv
Then download the 12008_PHI.csv and import it to excel.
following blasting PHIbase to the genome, the hits were filtered by effect on virulence.
First the a tab separated file was made in the clusters core directory containing PHIbase. These commands were run as part of previous projects but have been included here for completeness.