-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_baseline.py
552 lines (469 loc) · 22.5 KB
/
eval_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import logging
import logzero
import argparse
import os
import string
import time
import random
import numpy as np
import re
from statistics import mean
from tqdm import tqdm
from collections import Counter
import csv
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers import AutoModelForMaskedLM
from utils import load
from datasets import CreoleJsonDataset, CreoleDatasetWILDS
from wilds.common.grouper import CombinatorialGrouper
from wilds.common.data_loaders import GroupSampler
from wilds.common.utils import get_counts
from wilds.common.metrics.loss import ElementwiseLoss, MultiTaskLoss
from wilds.common.metrics.all_metrics import Accuracy, MultiTaskAccuracy, MSE
from algorithms.groupDRO import GroupDRO
def parse_args():
parser = argparse.ArgumentParser()
# Data
parser.add_argument("--file_path", type=str, default="",
help="Path to the data you are trying to finetune on or evaluate from")
parser.add_argument("--dictionary_path", type=str, default="",
help="Path to the creole specific dictionary")
parser.add_argument("--creole", type=str, default="", choices=["singlish", "haitian", "naija"])
parser.add_argument("--experiment", type=str, default="baseline", choices=["pretrained", "baseline", "dro"])
parser.add_argument("--group_strategy", type=str, default="collect",
choices=["collect", "cluster", "percent", "random", "one", "language"])
# Model
parser.add_argument("--tokenizer", type=str, default='bert-base-uncased',
help="Pretrained BERT: bert-base-uncased, bert-base-multilingual-cased, xlm-roberta-base, etc.")
parser.add_argument("--from_pretrained", type=str, default='bert-base-uncased',
help="Pretrained BERT: bert-base-uncased, bert-base-multilingual-cased, xlm-roberta-base, etc.,"
"Or full path to our pretrained model.")
parser.add_argument("--base_lang", type=str, default="en",
help="Base language of the Creole. en or fr")
# Logging
parser.add_argument("--checkpoint_dir", type=str, default="")
# Eval
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=1)
#DRO stuff
# Group
parser.add_argument("--algo_log_metric", type=str, default="mse")
parser.add_argument("--train_loader", type=str, default="standard", choices=['standard', 'group'])
parser.add_argument("--uniform_over_groups", default=True, action="store_true")
parser.add_argument("--n_groups_per_batch", type=int, default=1)
parser.add_argument("--no_group_logging", default=True, action="store_true")
parser.add_argument("--group_dro_step_size", type=float, default=0.01)
# Training
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--loss_function", type=str, default="cross_entropy",
choices=["cross_entropy", "mse", "multitask_bcd"])
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Former default was 5e-5")
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--max_grad_norm", type=int, default=1.0)
parser.add_argument("--scheduler", type=str, default="linear_schedule_with_warmup")
parser.add_argument("--scheduler_metric_name", type=str, default="fuckoff")
parser.add_argument("--num_warmup_steps", type=int, default=0,
help="Default in run_glue.py")
return parser.parse_args()
def haitian_dict_reader(path):
#need to clean out the English
dictionary = []
with open(path, "r") as indict:
lines = indict.readlines()
entry_lines = [l for l in lines if "/" in l]
#print(entry_lines[1])
#print(f"starting number of lines: {len(entry_lines)}")
haitian_entries = [l.split("/")[-1].strip("\n") for l in entry_lines]
#Cleaning the data
#no full parantheticals
haitian_entries_1 = [re.sub(r'\([^)]*\)', '', s) for s in haitian_entries]
#no cheeky half parantheticals
haitian_entries_2 = [re.sub(r'\(.*', '', s) for s in haitian_entries_1]
haitian_entries_3 = [re.sub(r'.*\)', '', s) for s in haitian_entries_2]
haitian_entries_4 = [s.lstrip(' ') for s in haitian_entries_3]
haitian_entries_5 = [s.strip(' ') for s in haitian_entries_4]
haitian_entries_6 = [s for s in haitian_entries_5 if len(s) > 1]
#print(f"len haitian_entries_6: {len(haitian_entries_6)}")
for s in haitian_entries_6:
sub_list = s.split(',')
for s in sub_list:
toks_list = s.split(' ')
for t in toks_list:
t = t.lstrip(' ')
t = t.strip(' ')
if len(t) > 1 and t not in string.punctuation and not t.isnumeric():
dictionary.append(t)
print(f"Preview of dictionary: {dictionary[:10]}")
#print(f"lol before we made it a set there are {len(dictionary)}")
dictionary = set(dictionary)
return dictionary
def creole_dict_reader(path):
dictionary = []
with open(path, "r") as indict:
lines = indict.readlines()
for line in lines:
line = line.strip("\n")
#try to split on whitespace
words = line.split(" ")
#if its longer than a thing, add it
[dictionary.append(w) for w in words if len(w) > 1]
print(f"Preview of dictionary: {dictionary[:10]}")
dictionary = set(dictionary)
return dictionary
def mask_dict_word(tokens, tokenizer, mlm_idxs):
output_label = [-100] * len(tokens)
for i in mlm_idxs:
output_label[i] = tokens[i].item()
tokens[i] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
return tokens.unsqueeze(0), torch.LongTensor(output_label).unsqueeze(0), mlm_idxs
def mask_1word(tokens, tokenizer):
output_label = [-100] * len(tokens)
rnd_token_ix = random.choice(np.arange(1, torch.where(tokens == 102)[0][0].item()))
output_label[rnd_token_ix] = tokens[rnd_token_ix].item()
tokens[rnd_token_ix] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
return tokens.unsqueeze(0), torch.LongTensor(output_label).unsqueeze(0), rnd_token_ix
def mask_allwords(tokens, tokenizer):
max_ix = torch.where(tokens == 102)[0][0].item()
batch_ids = torch.zeros(max_ix-1, tokens.size(0), dtype=torch.long)
output_labels = torch.zeros_like(batch_ids) - 100
mask_ix = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
for ix, tok_ix in enumerate(np.arange(1, max_ix)):
sent = tokens.clone()
out = tokens[ix+1].item()
sent[ix+1] = mask_ix
batch_ids[ix] = sent
output_labels[ix, ix+1] = out
return batch_ids, output_labels
def is_sublist(a, b, start):
if not a: return True, "fuck"
if not b: return False, "blah"
if b[:len(a)] == a:
return start, len(a)
else:
return is_sublist(a, b[1:], start+1)
#return b[:len(a)] == a or is_sublist(a, b[1:])
def get_model_at_epoch_evals(model, eval_dataset, epoch_num, creole_dictionary):
# Random token MLM
print("Computing 1-rnd-word Precision@k...")
tops = {1: [], 5: [], 10: []}
for i in tqdm(range(len(eval_dataset))):
# Get tokenized sentence
sent = eval_dataset.__getitem__(i)
# Mask 1 token at random
tokens, output_labels, mlm_ix = mask_1word(sent, tokenizer)
tokens = tokens.to(device)
output_labels = output_labels.to(device)
with torch.no_grad():
result = model(tokens, token_type_ids=None, labels=output_labels)
pred_logits = result.logits[0, mlm_ix].cpu()
tgt_index = output_labels[0, mlm_ix].cpu().item()
for k in [1, 5, 10]:
top_ixs = torch.topk(pred_logits, k).indices
top_ixs = set(top_ixs.tolist())
tops[k].append(int(tgt_index in top_ixs))
prec_at_1 = np.mean(tops[1])
prec_at_5 = np.mean(tops[5])
prec_at_10 = np.mean(tops[10])
print(f"Mean Top1: {prec_at_1}")
print(f"Mean Top5: {prec_at_5}")
print(f"Mean Top10: {prec_at_10}")
#Creole token MLM
print("Computing 1-creole-word Precision@k...")
creole_tops = {1: [], 5: [], 10: []}
sentences_skipped = 0
multi_toked_words = []
# convert dictionary to indexes
dict_ixs = []
for w in creole_dictionary:
w_tok_list = tokenizer(w, add_special_tokens=False).input_ids
dict_ixs.append(w_tok_list)
print(f"len dictionary: ")
print(len(creole_dictionary))
print(len(dict_ixs))
for i in tqdm(range(len(eval_dataset))):
# Get tokenized sentence
sent = eval_dataset.__getitem__(i)
# then determin if sent has stuffs in it
matching_ixs = []
matching_tokens = []
for lil_dict in dict_ixs:
was_matched, number = is_sublist(lil_dict, sent.tolist(), 0)
if was_matched:
#print(f"i dunno something worked...")
if str(number).isnumeric():
#print(f"was matched: {was_matched} , {number}")
matching_ixs.append([was_matched, was_matched+number])
#TODO: maybe filter some stuff by length eh
#if len(lil_dict) > 1:
# multi_toked_words.append(str(lil_dict))
# print(f"sent: {sent}")
# print(f"ld: {lil_dict}")
#result = all(elem in sent for in list2)
#for ix, w in enumerate(sent):
# for tok_list in dict_ixs:
# if w.item() in dict_ixs:
# matching_ixs.append(ix)
# matching_tokens.append(w.item())
#print(f"MATCHING? :: {matching_ixs}")
if len(matching_ixs) > 0:
#pick a
index_selected = np.random.choice(len(matching_ixs)) #index to the selected tuple
#print(f"MATCHING? :: {matching_ixs}")
#print(f"index slected: {index_selected}")
#print(f"matched: {matching_tokens}")
# Mask 1 token at random
#print(f"start range: {matching_ixs[index_selected][0]}")
#print(f"end range: {matching_ixs[index_selected][1]}")
mlm_idxs = [i for i in range(matching_ixs[index_selected][0], matching_ixs[index_selected][1])]
#mlm_idxs = []
tokens, output_labels, mlm_ix = mask_dict_word(sent, tokenizer, mlm_idxs)
tokens = tokens.to(device)
output_labels = output_labels.to(device)
with torch.no_grad():
result = model(tokens, token_type_ids=None, labels=output_labels)
for mlm_ix in mlm_idxs:
pred_logits = result.logits[0, mlm_ix].cpu()
tgt_index = output_labels[0, mlm_ix].cpu().item()
for k in [1, 5, 10]: #probably a miro average instead lol
top_ixs = torch.topk(pred_logits, k).indices
top_ixs = set(top_ixs.tolist())
creole_tops[k].append(int(tgt_index in top_ixs))
else:
sentences_skipped += 1
print(f"sents skipped: {sentences_skipped}")
#exit(333)
c_prec_at_1 = np.mean(creole_tops[1])
c_prec_at_5 = np.mean(creole_tops[5])
c_prec_at_10 = np.mean(creole_tops[10])
print(f"Mean Masked Creole Top1: {c_prec_at_1}")
print(f"Mean Masked Creole Top5: {c_prec_at_5}")
print(f"Mean Masked Creole Top10: {c_prec_at_10}")
# PPL
print("Computing PLL...")
ppls = []
try:
for i in tqdm(range(len(eval_dataset))):
# Get tokenized sentence
sent = eval_dataset.__getitem__(i)
# Mask all tokens
tokens, output_labels = mask_allwords(sent, tokenizer)
tokens = tokens.to(device)
output_labels = output_labels.to(device)
with torch.no_grad():
result = model(tokens, token_type_ids=None, labels=output_labels)
lm_loss = F.cross_entropy(result.logits.view(-1, tokenizer.vocab_size), output_labels.view(-1), reduction="sum")
ppls.append(lm_loss.cpu().item())
except Exception as e:
print(f"* Couldnt compute PPL on GPU, setting PPL to a dummy value")
ppls.append("DUMMY")
if ppls[0] != "DUMMY":
mean_ppl = np.mean(ppls)
else:
mean_ppl = 0.0
print(f"Mean PLL: {mean_ppl}")
return [epoch_num, round(prec_at_1, 4), round(prec_at_5, 4), round(prec_at_10, 4), round(mean_ppl,4), round(c_prec_at_1, 4),
round(c_prec_at_5, 4), round(c_prec_at_10, 4)]
def clean_checkpoint_name(filepath):
return filepath.split("conll")[-1]
if __name__ == "__main__":
args = parse_args()
# log.debug(args)
#log_level = logging.DEBUG if args.debug else logging.INFO
#logzero.loglevel(log_level)
#logzero.formatter(logzero.LogFormatter(datefmt="%Y-%m-%d %H:%M:%S"))
# load BERT tokenizer
print('Loading tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, do_lower_case=('uncased' in args.from_pretrained))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# If there's a GPU available...
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# Load evaluation data
eval_dataset = CreoleJsonDataset(src_file=args.file_path, tokenizer=tokenizer, base_language=args.base_lang, creole_only=True)
if args.creole == "singlish":
creole_dictionary = creole_dict_reader(path=args.dictionary_path)
elif args.creole == "naija":
creole_dictionary = creole_dict_reader(path=args.dictionary_path)
elif args.creole == "haitian":
creole_dictionary = haitian_dict_reader(path=args.dictionary_path)
else:
print(f"please specify the argument --creole= from ['singlish', 'haitian', 'naija']")
print(f"other creoles have not been implemented")
raise NotImplementedError
"""
if args.creole == "singlish":
eval_dataset = SinglishUDDataset(src_dir=args.file_path, tokenizer=tokenizer)
creole_dictionary = creole_dict_reader(path=args.dictionary_path)
elif args.creole == "naija":
creole_dictionary = creole_dict_reader(path=args.dictionary_path)
if "SUD" in args.file_path:
eval_dataset = NaijaUDDataset(src_dir=args.file_path, tokenizer=tokenizer)
elif "masakhane" in args.file_path:
eval_dataset = NaijaMasakhaneNERDataset(src_dir=args.file_path, tokenizer=tokenizer)
else:
raise NotImplementedError
elif args.creole == "haitian":
eval_dataset = HaitianEvalDatasets(src_dir=args.file_path, tokenizer=tokenizer)
creole_dictionary = haitian_dict_reader(path=args.dictionary_path)
else:
print(f"please specify the argument --creole= from ['singlish', 'haitian', 'naija']")
print(f"other creoles have not been implemented")
raise NotImplementedError
"""
csv_columns = ["experiment", "dev", "epoch", "p@1", "p@5", "p@10", "PPL", "c-p@1", "c-p@5", "c-p@10"]
csv_rows = []
all_epoch_results_lists = []
column_names = ["epoch", "p@1", "p@5", "p@10", "PPL", "c-p@1", "c-p@5", "c-p@10"]
if args.experiment == "baseline":
model_dirs = os.listdir(args.checkpoint_dir)
model_dirs = sorted([d for d in model_dirs if d.isnumeric() and d in ["100000"]])
for epoch in model_dirs:
full_path = os.path.join(args.checkpoint_dir, epoch)
model = AutoModelForMaskedLM.from_pretrained(full_path)
model.to(device)
#model.cpu()
model.eval()
epoch_results_list = get_model_at_epoch_evals(model, eval_dataset, epoch, creole_dictionary)
all_epoch_results_lists.append(epoch_results_list)
out_row = [clean_checkpoint_name(full_path), args.file_path] + epoch_results_list
csv_rows.append(out_row)
del model
#print("******* RUNNING RESULTS *********** ")
#row_format = "{:>15}" * (len(column_names) + 1)
#print(row_format.format("", *column_names))
#for epoch_results in all_epoch_results_lists:
# print(row_format.format("", *epoch_results))
if args.experiment == "dro":
args.optimizer_kwargs = {'eps': 1e-8}
args.scheduler_kwargs = {'num_warmup_steps': 0}
vocab_size = tokenizer.vocab_size
train_dataset = CreoleDatasetWILDS(eval_dataset, tokenizer, group_strategy="one",
group_file="",
creole=args.creole) # this one has (x, y, metadata)
train_grouper = CombinatorialGrouper(dataset=train_dataset, groupby_fields=train_dataset.metadata_fields)
group_ids = train_grouper.metadata_to_group(train_dataset.metadata_array)
batch_sampler = GroupSampler(
group_ids=group_ids,
batch_size=args.batch_size,
n_groups_per_batch=train_grouper.n_groups,
uniform_over_groups=False, # was True
distinct_groups=False) # was True
torch.set_printoptions(threshold=100)
print(f"group_ids: {group_ids} | num groups: {train_grouper.n_groups}")
print(f"size of groups: {group_ids.size()}")
print(Counter(group_ids.tolist()))
train_loader = DataLoader(train_dataset, shuffle=False, sampler=None, batch_sampler=batch_sampler,
drop_last=False)
print(f"metadata_array: {train_dataset.metadata_array}")
train_g = train_grouper.metadata_to_group(train_dataset.metadata_array)
is_group_in_train = get_counts(train_g, train_grouper.n_groups) > 0
print(f"is_group_in_train: {is_group_in_train}")
# init DRO algorithm
base_model = AutoModelForMaskedLM.from_pretrained(args.from_pretrained).to(device)
#print(f"base model: {base_model}")
# options for losses and metric
losses = {
'cross_entropy': ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none', ignore_index=-100)),
'mse': MSE(name='loss'),
'multitask_bce': MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none')),
}
algo_log_metrics = {
'accuracy': Accuracy(),
'mse': MSE(),
'multitask_accuracy': MultiTaskAccuracy(),
# 'f1': F1(average='macro'),
None: None,
}
algorithm = GroupDRO(
config=args,
model=base_model,
d_out=train_dataset.y_size,
grouper=train_grouper,
loss=losses[args.loss_function], # cross_entropy
metric=None, # MSE(), #
n_train_steps=len(train_loader) * args.num_epochs,
is_group_in_train=is_group_in_train)
#dirLUT = {'bert-base-uncased': 'bert', 'bert-base-multilingual-cased': 'mbert', 'xlm-roberta-base': 'xlmr'}
#path_to_checkpoint = f"{args.checkpoint_dir}/{dirLUT[args.tokenizer]}/{args.creole}"
all_the_models = os.listdir(args.checkpoint_dir)
selected_models = sorted([m for m in all_the_models if args.group_strategy in m])
#filter this to be only 0,4,9 epochs
look_up_models = []
for model in selected_models:
if any(e in model for e in ["100000"]):
look_up_models.append(model)
print(f"look up models: {look_up_models}")
for cached_model in look_up_models:
epoch_number = 100000 #cached_model[-5]
full_path_to_model = os.path.join(args.checkpoint_dir, cached_model)
print(f"check path: {full_path_to_model}")
algorithm, epoch = load(algorithm=algorithm, path=full_path_to_model, device=device)
print(f"epoch: {epoch}")
algorithm.to(device)
algorithm.eval()
#exit(333)
model = algorithm.model
epoch_results_list = get_model_at_epoch_evals(model, eval_dataset, epoch, creole_dictionary)
all_epoch_results_lists.append(epoch_results_list)
del model
out_row = [clean_checkpoint_name(full_path_to_model), args.file_path] + epoch_results_list
csv_rows.append(out_row)
#print("******* RUNNING RESULTS *********** ")
#row_format = "{:>15}" * (len(column_names) + 1)
#print(row_format.format("", *column_names))
#for epoch_results in all_epoch_results_lists:
# print(row_format.format("", *epoch_results))
if args.experiment == "pretrained":
model = AutoModelForMaskedLM.from_pretrained(args.from_pretrained)
#model.cpu()
model.to(device)
model.eval()
epoch_results_list = get_model_at_epoch_evals(model, eval_dataset, 0, creole_dictionary)
all_epoch_results_lists.append(epoch_results_list)
del model
out_row = [f"Pretrained-{args.from_pretrained}", args.file_path] + epoch_results_list
csv_rows.append(out_row)
print ("******* FINAL RESULTS *********** ")
row_format = "{:>15}" * (len(column_names) + 1)
print(row_format.format("", *column_names))
for epoch_results in all_epoch_results_lists:
print(row_format.format("", *epoch_results))
results_dir = "/science/image/nlp-datasets/creoles/results"
experiment = csv_rows[0][0]
if "mixed" in experiment:
results_file = f"mixed_{args.creole}.csv"
elif "creoleonly" in experiment:
results_file = f"creoleonly_{args.creole}.csv"
else:
results_file = f"results_{args.creole}.csv"
full_path_to_results = os.path.join(results_dir, results_file)
if not os.path.isfile(full_path_to_results):
with open(full_path_to_results, 'w') as file:
writer = csv.writer(file)
writer.writerow(csv_columns)
for row in csv_rows:
writer.writerow(row)
else: #append results
with open(full_path_to_results, 'a') as file:
writer = csv.writer(file)
for row in csv_rows:
writer.writerow(row)