-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
213 lines (180 loc) · 6.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import sys
import os
import csv
import argparse
import random
import time, datetime
from pathlib import Path
import numpy as np
import torch
import sklearn
from wilds.common.metrics.metric import Metric
from wilds.common.metrics.all_metrics import logits_to_pred
from wilds.common.utils import avg_over_groups, minimum, maximum
try:
import wandb
except Exception as e:
pass
class F1(Metric):
def __init__(self, prediction_fn=logits_to_pred, name=None, average='macro'):
self.prediction_fn = prediction_fn
if name is None:
name = f'F1'
self.average = average
super().__init__(name=name)
def _compute(self, y_pred, y_true):
if self.prediction_fn is not None:
y_pred = self.prediction_fn(y_pred)
device = y_pred.device
# score = sklearn.metrics.f1_score(y_true, y_pred, average=self.average, labels=torch.unique(y_true.cpu()))
score = sklearn.metrics.f1_score(y_true.cpu(), y_pred.cpu(), average=self.average)
return torch.tensor(score).to(device)
def worst(self, metrics):
return minimum(metrics)
def update_average(prev_avg, prev_counts, curr_avg, curr_counts):
denom = prev_counts + curr_counts
if isinstance(curr_counts, torch.Tensor):
denom += (denom==0).float()
elif isinstance(curr_counts, int) or isinstance(curr_counts, float):
if denom==0:
return 0.
else:
raise ValueError('Type of curr_counts not recognized')
prev_weight = prev_counts/denom
curr_weight = curr_counts/denom
return prev_weight*prev_avg + curr_weight*curr_avg
# Taken from https://sumit-ghosh.com/articles/parsing-dictionary-key-value-pairs-kwargs-argparse-python/
class ParseKwargs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, dict())
for value in values:
key, value_str = value.split('=')
if value_str.replace('-','').isnumeric():
processed_val = int(value_str)
elif value_str.replace('-','').replace('.','').isnumeric():
processed_val = float(value_str)
elif value_str in ['True', 'true']:
processed_val = True
elif value_str in ['False', 'false']:
processed_val = False
else:
processed_val = value_str
getattr(namespace, self.dest)[key] = processed_val
def parse_bool(v):
if v.lower()=='true':
return True
elif v.lower()=='false':
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def save(algorithm, epoch, path):
state = {}
state['algorithm'] = algorithm.state_dict()
state['epoch'] = epoch
#state['best_val_metric'] = best_val_metric
torch.save(state, path)
def load(algorithm, path, device="cpu"):
state = torch.load(path, map_location=device)
algorithm.load_state_dict(state['algorithm'])
return algorithm, state['epoch'] #, state['best_val_metric']
def log_group_data(datasets, grouper, logger):
for k, dataset in datasets.items():
name = dataset['name']
dataset = dataset['dataset']
logger.write(f'{name} data...\n')
if grouper is None:
logger.write(f' n = {len(dataset)}\n')
else:
_, group_counts = grouper.metadata_to_group(
dataset.metadata_array,
return_counts=True)
group_counts = group_counts.tolist()
for group_idx in range(grouper.n_groups):
logger.write(f' {grouper.group_str(group_idx)}: n = {group_counts[group_idx]:.0f}\n')
logger.flush()
class Logger(object):
def __init__(self, fpath=None, mode='w'):
self.console = sys.stdout
self.file = None
if fpath is not None:
self.file = open(fpath, mode)
def __del__(self):
self.close()
def __enter__(self):
pass
def __exit__(self, *args):
self.close()
def write(self, msg):
self.console.write(msg)
if self.file is not None:
self.file.write(msg)
def flush(self):
self.console.flush()
if self.file is not None:
self.file.flush()
os.fsync(self.file.fileno())
def close(self):
self.console.close()
if self.file is not None:
self.file.close()
class BatchLogger:
def __init__(self, csv_path, mode='w', use_wandb=False):
self.path = csv_path
self.mode = mode
self.file = open(csv_path, mode)
self.is_initialized = False
# Use Weights and Biases for logging
self.use_wandb = use_wandb
if use_wandb:
self.split = Path(csv_path).stem
def setup(self, log_dict):
columns = log_dict.keys()
# Move epoch and batch to the front if in the log_dict
for key in ['batch', 'epoch']:
if key in columns:
columns = [key] + [k for k in columns if k != key]
self.writer = csv.DictWriter(self.file, fieldnames=columns)
if self.mode=='w' or (not os.path.exists(self.path)) or os.path.getsize(self.path)==0:
self.writer.writeheader()
self.is_initialized = True
def log(self, log_dict):
if self.is_initialized is False:
self.setup(log_dict)
self.writer.writerow(log_dict)
self.flush()
if self.use_wandb:
results = {}
for key in log_dict:
new_key = f'{self.split}/{key}'
results[new_key] = log_dict[key]
wandb.log(results)
def flush(self):
self.file.flush()
def close(self):
self.file.close()
def set_seed(seed):
"""Sets seed"""
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def log_config(config, logger):
for name, val in vars(config).items():
logger.write(f'{name.replace("_"," ").capitalize()}: {val}\n')
logger.write('\n')
def initialize_wandb(config):
name = config.dataset + '_' + config.algorithm + '_' + config.log_dir
wandb.init(name=name,
project=f"wilds")
wandb.config.update(config)
def format_time(elapsed):
'''
Takes a time in seconds and returns a string hh:mm:ss
'''
# Round to the nearest second.
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))