-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
124 lines (100 loc) · 4.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import csv
import glob
import os
import tkinter as tk
from tkinter import filedialog
import pandas as pd
import matplotlib.pyplot as plt
def select_directory():
root = tk.Tk()
root.withdraw()
directory = filedialog.askdirectory()
root.destroy()
return directory
def read_csv_file(filename):
try:
with open(filename, 'r', encoding='utf-8') as file:
return list(csv.reader(file, delimiter=';'))
except UnicodeDecodeError:
with open(filename, 'r', encoding='ISO-8859-1') as file:
return list(csv.reader(file, delimiter=';'))
def consolidate_csv_correctly(directory, output_filename):
files_pattern = os.path.join(directory, '*.csv')
output_file = os.path.join(directory, output_filename)
headers_set = False
with open(output_file, 'w', newline='', encoding='utf-8') as outfile:
writer = None
for filename in glob.glob(files_pattern):
lines = read_csv_file(filename)
if len(lines) <= 9:
continue
for _ in range(4):
lines.pop(0)
if not headers_set:
headers = lines.pop(0)
writer = csv.writer(outfile)
writer.writerow(headers)
headers_set = True
else:
lines.pop(0)
writer.writerows(lines)
return output_file
def generate_scatterplot(file_path):
# Adjust the format string to match your timestamp format
date_format = "%Y %m %d %H:%M:%S:%f"
data = pd.read_csv(file_path, delimiter=',')
data['Timestamp'] = pd.to_datetime(data['Timestamp'], format=date_format, errors='coerce')
# Calculate statistics for numeric columns only
stats = data.select_dtypes(include=['number']).agg(['mean', 'median', 'std', 'min', 'max'])
# Plotting
plt.figure(figsize=(15, 7))
for column in data.columns[1:]: # Skip 'Timestamp' column
if data[column].dtype in ['float64', 'int64'] and not column.startswith('Unnamed'):
stat_text = (f"{column} - Avg: {stats[column]['mean']:.2f}, "
f"Median: {stats[column]['median']:.2f}, "
f"Std: {stats[column]['std']:.2f}, "
f"Min: {stats[column]['min']:.2f}, "
f"Max: {stats[column]['max']:.2f}")
plt.scatter(data['Timestamp'], data[column], label=stat_text)
plt.xlabel('Timestamp')
plt.ylabel('Values')
plt.title('Scatter Plot of CSV Data with Statistics')
plt.legend()
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
def generate_linegraph(file_path):
# Adjust the format string to match your timestamp format
date_format = "%Y %m %d %H:%M:%S:%f"
data = pd.read_csv(file_path, delimiter=',')
data['Timestamp'] = pd.to_datetime(data['Timestamp'], format=date_format, errors='coerce')
# Calculate statistics for numeric columns only
stats = data.select_dtypes(include=['number']).agg(['mean', 'median', 'std', 'min', 'max'])
# Plotting
plt.figure(figsize=(15, 7))
for column in data.columns[1:]: # Skip 'Timestamp' column
if data[column].dtype in ['float64', 'int64'] and not column.startswith('Unnamed'):
stat_text = (f"{column} - Avg: {stats[column]['mean']:.2f}, "
f"Median: {stats[column]['median']:.2f}, "
f"Std: {stats[column]['std']:.2f}, "
f"Min: {stats[column]['min']:.2f}, "
f"Max: {stats[column]['max']:.2f}")
plt.plot(data['Timestamp'], data[column], label=stat_text)
plt.xlabel('Timestamp')
plt.ylabel('Values')
plt.title('Line Graph of CSV Data with Statistics')
plt.legend()
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Main execution
directory = select_directory()
if directory:
output_filename = 'corrected_consolidated.csv'
consolidated_file = consolidate_csv_correctly(directory, output_filename)
print(f"Consolidation complete. File saved as {consolidated_file}")
generate_scatterplot(consolidated_file)
else:
print("No directory selected. Operation cancelled.")