Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the MinStack class:
- MinStack() initializes the stack object.
- void push(int val) pushes the element val onto the stack.
- void pop() removes the element on the top of the stack.
- int top() gets the top element of the stack.
- int getMin() retrieves the minimum element in the stack.
You must implement a solution with O(1) time complexity for each function.
Example 1:
Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
Output
[null,null,null,null,-3,null,0,-2]
Explanation MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2
Constraints:
-
$-2^{31}$ <= val <=$2^{31} - 1$ - Methods pop, top and getMin operations will always be called on non-empty stacks.
- At most
$3 * 10^4$ calls will be made to push, pop, top, and getMin.
Problem can be found in here!
class MinStack:
def __init__(self):
self.stack = [float("inf")]
def push(self, val: int) -> None:
min_value = self.stack[-1]
self.stack.append(val)
self.stack.append(min(min_value, val))
def pop(self) -> None:
self.stack.pop()
self.stack.pop()
def top(self) -> int:
min_value = self.stack.pop()
current_value = self.stack.pop()
self.stack.append(current_value)
self.stack.append(min_value)
return current_value
def getMin(self) -> int:
return self.stack[-1]
Time Complexity: