Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
Implement the MyQueue class:
- void push(int x) Pushes element x to the back of the queue.
- int pop() Removes the element from the front of the queue and returns it.
- int peek() Returns the element at the front of the queue.
- boolean empty() Returns true if the queue is empty, false otherwise.
Notes:
- You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
- Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Example 1:
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
Constraints:
-
$1$ <= x <=$9$ - At most 100 calls will be made to push, pop, peek, and empty.
- All the calls to pop and peek are valid.
Follow-up: Can you implement the queue such that each operation is amortized
Problem can be found in here!
class MyQueue:
def __init__(self):
self.in_stack = []
self.out_stack = []
def push(self, x: int) -> None:
self.in_stack.append(x)
def pop(self) -> int:
self.peek()
return self.out_stack.pop()
def peek(self) -> int:
if not self.out_stack:
while self.in_stack:
self.out_stack.append(self.in_stack.pop())
return self.out_stack[-1]
def empty(self) -> bool:
return not (self.in_stack or self.out_stack)
Amortized Time Complexity: