-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJackson_Lake_Final_Pres.Rmd
983 lines (667 loc) · 20.9 KB
/
Jackson_Lake_Final_Pres.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
---
title: "Jackson Lake level Preliminary Assessment"
subtitle: ""
author: "Daniel Hintz, Leigh Ann Starcevich, Simon Weller, Ted Owen"
date: "April 25, 2023"
output:
xaringan::moon_reader:
css:
- default
- css/mytheme.css
- css/mytheme-fonts.css
- css/custom_fixes.css
lib_dir: libs
seal: false
self_contained: false
nature:
highlightStyle: googlecode
highlightLines: true
countIncrementalSlides: false
ratio: 16:9
#ratio: 191:100
beforeInit: "macros.js"
slideNumberFormat: |
<div class="progress-bar-container">
<div class="progress-bar" style="width: calc(%current% / %total% * 100%);">
</div>
</div>
---
```{r Setup, include = FALSE}
options(htmltools.dir.version = FALSE)
library(knitr)
library(tidyverse)
library(xaringanExtra)
# remotes::install_github('nhs-r-community/NHSRtheme')
# remotes::install_github("https://github.com/nhs-r-community/NHSRdatasets")
library(NHSRtheme)
library(NHSRdatasets)
# remotes::install_github("mitchelloharawild/icons")
library(icons)
# set default options
opts_chunk$set(echo=FALSE,
collapse = TRUE,
fig.width = 7.252,
fig.height = 4,
dpi = 300)
# set engines
knitr::knit_engines$set("markdown")
xaringanExtra::use_tile_view()
xaringanExtra::use_panelset()
xaringanExtra::use_clipboard()
xaringanExtra::use_webcam()
xaringanExtra::use_broadcast()
xaringanExtra::use_share_again()
xaringanExtra::style_share_again(
share_buttons = c("twitter", "linkedin", "pocket")
)
# uncomment the following lines if you want to use the NHS-R theme colours by default
# scale_fill_continuous <- partial(scale_fill_nhs, discrete = FALSE)
# scale_fill_discrete <- partial(scale_fill_nhs, discrete = TRUE)
# scale_colour_continuous <- partial(scale_colour_nhs, discrete = FALSE)
# scale_colour_discrete <- partial(scale_colour_nhs, discrete = TRUE)
# Libraries for actaual content
#### Libraries ####
library(openxlsx)
library(forecast)
library(tsibble)
library(dplyr)
library(lubridate)
library(patchwork)
library(ggplot2)
library(zoo)
library(conflicted)
conflict_prefer("filter", "dplyr")
conflict_prefer("select", "dplyr")
conflicts_prefer(zoo::index)
conflicts_prefer(plotly::layout)
source("/Users/danielhintz/Dropbox/UNI/WEST_int/R_files/Helper_Functions.R")
R_data <- "/Users/danielhintz/Dropbox/UNI/WEST_int/data/"
#### Reading in Data ####
level <-
openxlsx::read.xlsx("/Users/danielhintz/Dropbox/UNI/WEST_int/JacksonLake/DavidThomaFiles/Snake at Flag Ranch Gridmet_Penman_Hamon_Oudin_Batch_v3.1 3 flows 1983-2022.xlsm",
sheet = "Jackson Lake annual",
startRow = 1,
colNames = TRUE,
rowNames = FALSE,
detectDates = TRUE,
cols = c(1:6)
)
#### Data Rescaling ####
level_ts_d <- ts(level$jck_fb , start=c(1979, 1, 1), frequency=365)
level_ts_y <- ts_Rescale(level_ts_d, "%Y")$ts
level_ts_m <- ts_Rescale(level_ts_d, "%m")$ts
#### Splits ####
lv_split_y <- ts_split(level_ts_y, split = "2015-01-01")
lv_split_m <- ts_split(level_ts_m, split = "2015-01-01")
lv_split_d <- ts_split(level_ts_d, split = "2015-01-01")
```
class: title-slide, right, top
background-image: url(img/hex-xaringan.png), url(img/GTLCColterBay-1920x1280.jpg)
background-position: 90% 75%, 75% 75%
background-size: 8%, cover
<!--
```{r}
# background-image: hex-xaringan.png(xaringan logo) background photo
```
-->
.right-column[
# `r rmarkdown::metadata$title`
### `r rmarkdown::metadata$subtitle`
**`r rmarkdown::metadata$author`**<br>
`r rmarkdown::metadata$date`
]
.palegrey[.left[.footnote[Photo by [GrandTetonLodgeCo](https://jacksonhole-traveler-production.s3.amazonaws.com/wp-content/uploads/2014/06/GTLCColterBay-1920x1280.jpg)]]]
---
<div class="logo"></div>
# Outline (1)
- Downstream Variables and Lake level
--
- Motivation for SPI
--
- Limitations for Long-term forecasting
--
- SNIAVE long-term forecasts
--
- Bayesian Long Term Forecast
--
- Why am I showing you This?
--
- Assumptions of our Methods used
---
# Outline (2)
- Unexplored LTTF Methods
--
- What is State of the Art for LTTF
--
- Recommendations
--
- Successes and Failures
--
- References
---
<div class="logo"></div>
# Downstream Variables and Lake level
.panelset[
.panel[.panel-name[Dual Axis Plot]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r plotly_Dual_Axis_Plot}
load(
"/Users/danielhintz/Dropbox/UNI/WEST_int/R_files/Dual_axis_plot/Plotly_dual_axis_plot_Outflow_vs_Deficit.RData"
)
Plotly_dual_axis_plot_Outflow_vs_Deficit <-
plot_ly(data = Outflow_v_Deficit_m,
width = 800,
height = 415) %>%
add_lines(
x = ~ Date,
y = ~ Outflow / coeff_1 ,
name = "Outflow",
line = list(color = Outflow_Color, width = 2.5)
) %>%
add_lines(
x = ~ Date,
y = ~ Deficit / coeff_2,
yaxis = "y2",
name = "Deficit",
line = list(color = Deficit_Color, width = 2)
) %>%
layout(
title = "Outflow Versus Deficit",
plot_bgcolor = plot_background,
yaxis = list(
title = "Outflow (cbc ft psc)",
gridcolor = Outflow_grid ,
gridwidth = grid_thickness,
tickvals = y1_ticks,
ticktext = y1_labels
),
yaxis2 = list(
title = "Deficit (in)",
titlefont = list(color = Deficit_Color),
overlaying = "y",
side = "right",
tickvals = y2_ticks,
ticktext = y2_labels,
gridcolor = Deficit_grid,
gridwidth = grid_thickness,
bgcolor = transparent_white
),
xaxis = list(bgcolor = area_background)
)
Plotly_dual_axis_plot_Outflow_vs_Deficit
```
</div>
]
.panel[.panel-name[Postmortem]
> *Because Jackson Lake Dam managers release water from the lake in controlled, consistent increments to prevent significant fluctuations, downstream phenomena unlikely to be predictive of fluctuations in Lake level.*
- Thus, meteorological variables concerning the upper snake river are key (Supply side)
]
.panel[.panel-name[Transition]
- On the next slide we will see Deficit, SPI and Lake level altogether
]
]
---
background-image: url(img/SPI_vs_LakeLevel_vs_Deficit.PNG)
background-size: contain
background-color: white
class: inverse, middle, center
<div class="logo"></div>
```{r SPI_vs_Lake_Level_vs_Deficit}
# Below show how SPI_vs_LakeLevel_vs_Deficit.PNG was generated, not after generating the pdf I converted it to a PNG
load("/Users/danielhintz/Dropbox/UNI/WEST_int/Jackson_Lake_Final_Pres/Blackfoot_monthly_SPI.Rdata")
level$date <- as.Date(paste0(level$year,"-", level$month, "-",level$day))
level_m <- as_tsibble(level, index = date) %>%
mutate(year_month = ymd(paste(year(date), month(date), "01"))) %>%
index_by(year_month) %>%
summarise(across(-c(date), ~mean(., na.rm = TRUE))) %>%
rename(date = year_month)
level_87 <- level_m %>% filter(date >= as.Date("1987-07-01") & date <= as.Date("2021-12-01"))
spi_87<- jc_spi_regPET_m_df %>% filter(date >= as.Date("1987-07-01") & date <= as.Date("2021-12-01"))
# par(col.axis = "#302B25", col.lab = "#302B25", col.main = "#302B25",
# col.sub = "#302B25", fg = "#302B25", bg = "#FFFEFE",
# lwd = 2)
#
# st <- decimal_date(as.Date("1987-07-01"))
# pdf(file = "SPI_vs_LakeLevel_vs_Deficit.pdf")
# par(mfrow = c(3,1))
# plot(ts(level_87$jck_fb, start = c(st), frequency = 12), ylab = "Level")
# plot(ts(spi_87$SPI, start = c(st), frequency = 12), ylab = "SPI")
# plot(ts(Outflow_v_Deficit_m$Deficit, start = c(st), frequency = 12), ylab = "Blackfoot Deficit")
# par(mfrow = c(1,1))
# dev.off()
```
---
<div class="logo"></div>
# Motivation for SPI
.pull-left[
<div style="text-align: center;">
<h2 style="font-size: 16px;">Wyoming Drought Index</h2>
<img src="img/drought_index.PNG" style="width: 600px; height: 500px;" />
</div>
]
.pull-right[
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r Droght_level_comp}
ts_plotly(list(level_ts_d), ylab = "level (ft)", title = "Jackson Lake level (Daily)",colors = c("#6FB1D1"),plot_height = 540, plot_width = 500) %>%
add_lines(x = ~Date, y = rep(6753, nrow(as_tsibble(level_ts_d))), line = list(color = 'goldenrod'))
```
</div>
]
---
<div class="logo"></div>
# Limitations for Long-term forecasting
- Forecasting predictor variables for our overall forecasts
--
- Generally, the more stationary a process the more predictable it is. (Lake level is not stationary)
--
- Long term forecasts are inherently very noisy
--
- For common forecasting methods, if there isn't a persistence in the captured trend and seasonality wane with longer forecasting periods, i.e. they become SNAIVE or a flat line (see example on next slide)
--
- For example ARIMA was built for short-time forecasting
---
<div class="logo"></div>
# SNAIVE long-term forecasts
.panelset[
.panel[.panel-name[SNAIVE]
<div style="text-align: center;">
<img src="img/SNAIVE_30y.PNG" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[ARIMA]
<div style="text-align: center;">
<img src="img/ARIMA_30y_noCov.PNG" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[Sub-Series]
<div style="text-align: center;">
<img src="img/Level_subseries.png" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[SNAIVE Sub-Series]
<div style="text-align: center;">
<img src="img/SNAIVE_subseries.PNG" style="width: 70%; height: 400px;" />
</div>
]
.panel[.panel-name[ARIMA Sub-Series]
<div style="text-align: center;">
<img src="img/ARIMA_subseries.PNG" style="width: 70%; height: 400px;" />
</div>
]
]
<!-- text immediately below ??? is present note accessible from presenter mode from hitting P-->
???
- Why am I showing you forecasts that are clearly bad?
- Because we need covariates that capture information that allows for drift and non-stationary in our forecasts
- So what might they those covariates/variables be?
- For that we might need your insights
<!-- there is no symbol to end presenter comments-->
---
<div class="logo"></div>
# Bayesian Long Term Forecast
.panelset[
.panel[.panel-name[Single Iteration]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r}
load("/Users/danielhintz/Dropbox/UNI/WEST_int/Jackson_Lake_Final_Pres/allcovResp2.RData")
plot_bsts_prediction_plotly(allcovResp2$pred_list[[1]] ,plot_height = 415, plot_width = 800)
```
</div>
]
.panel[.panel-name[Multiple Iterations]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r}
ts_plotly(
allcovResp2$pred_list_ts, plot_height = 415, plot_width = 800
)
```
</div>
]
.panel[.panel-name[Bootstrap]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r}
ts_plotly(
allcovResp2$bagged_average_ts, plot_height = 415, plot_width = 800
)
```
</div>
]
.panel[.panel-name[Discussion]
### Why am I showing you this?
- Bayesian time series allows for information like trend and seasonality to persist
- However, a 30 year forecast window allows for A LOT of uncertainty!
- So this forecast is not to be trusted!
]
.panel[.panel-name[Variables]
<div style="text-align: center;">
<img src="img/bsts_inclusion.png" style="width: 70%; height: auto;" />
</div>
]
]
---
<div class="logo"></div>
# Assumptions of our Methods used
- Main Assumptions/use-cases are
--
- Stationarity
--
- Linearity
--
- Classical methods (Autoregressive Moving Average (ARMA) and Auto-regressive Method (AR)) have been shown to perform best on systems with simpler underlying structures
--
- Specilised Machine Lerning Methods may be prefered over Classical statisitcs for forecasting meteorological systems
---
<div class="logo"></div>
# Unexplored LTTF Methods
- Error-Correction Model for Co-integrated Time Series
--
- Is intended for matrix of covariates that share long-run relationships with the response
--
- ECM makes it possible to deal with non- stationary data series
--
- ANFIS (Adaptive neuro fuzzy inference system)
--
- Tested performance for predicting 1 month ahead Urmia Lake Level in Iran
--
- Was able to account for drift in observed series
--
- No documented uses of long term forecasting, though I wouldn't rule it out
--
- There are in fact, many types of forecasting methods for Time series surfacing in the literature, open source implementation is still lacking for long-term time-series forecasting (LTTF)
---
<div class="logo"></div>
# What is State of the Art for LTTF
<br>
<br>
<div style="text-align: center;">
<figure>
<img src="img/SOTA_LTTF_comp.PNG" style="width: 1500px; height: auto;" />
<figcaption style="text-align: left; font-size: 12px;">See Li, Y., X. Lu, H. Xiong, et al. (2023)</figcaption>
</figure>
</div>
---
<div class="logo"></div>
# Recommendations
- Find a supply side variable that better captures shocks
--
- Try aggregating SPI measures around Upper Snake River Watershed
--
- Try ANFIS (Adaptive neuro fuzzy inference system), see Talebizadeh, M. and A. Moridnejad (2011) for short term forecast
---
<div class="logo"></div>
# Successes and Failures
#### Successes:
--
- Identified that downstream phenomena are not effective predictors for lake level
--
- Identified variables of interest for future work (SPI, PACK, SOIL Rnl_1)
--
- Was able to achieve strong back-cast performance for a short term forecasting
--
#### Failures:
- Was not able to include scenario based climate forecasts ie (rcp's)
--
- Was not able to predict changing frequency in shocks
--
- Was not able to generate a forecast of acceptable accuracy
---
<div class="logo"></div>
# References (1)
```{r print_refs_1,results='asis', echo=FALSE, warning=FALSE, message=FALSE}
print_refs <- function(bib_path, keys_to_include, ui = "- ") {
bib <- RefManageR::ReadBib(bib_path, check = FALSE)
# REMEMBER to set the options results='asis', echo=FALSE, warning=FALSE, message=FALSE
# in {r}
for (i in 1:length(keys_to_include)) {
writeLines(ui)
print(bib[key = keys_to_include[i]],
.opts = list(check.entries = FALSE,
style = "html",
bib.style = "authoryear"))
}
}
bib_file <- "/Users/danielhintz/Dropbox/UNI/WEST_int/Jackson_Lake_Final_Pres/References.bib"
cite_keys <- function(bib_file){sort(unlist(lapply(RefManageR::ReadBib(bib_file), function(entry) entry$key)))}
keys <- cite_keys(bib_file)
end_first <- 4
keys_1 <- keys[1:end_first]
# Usage
print_refs(
bib_file,
keys_1
)
```
---
<div class="logo"></div>
# References (2)
```{r print_refs_2, results='asis', echo=FALSE, warning=FALSE, message=FALSE}
`%notin%` <- Negate(`%in%`)
keys_2 <- (keys[keys %notin% keys_1])[1:4]
print_refs(
bib_file,
keys_2
)
```
---
<div class="logo"></div>
# References (3)
```{r print_refs_3, results='asis', echo=FALSE, warning=FALSE, message=FALSE}
keys_3 <- (keys[keys %notin% c(keys_1, keys_2)])
print_refs(
bib_file,
keys_3
)
```
---
class: center, middle
# Material from Last Meeting
---
<div class="logo"></div>
# Outline
- Colter Bay Marina
--
- Daily, Monthly and Yearly lags for Lake Level
--
- Objectives
--
- Short Term
--
- Long term
--
- System Drivers
--
- Missing Information?
---
<div class="logo"></div>
# Colter Bay Marina
.panelset[
.panel[.panel-name[Colter Bay]
<div style="text-align: center;">
<img src="img/colterbay_far.PNG" style="width: 50%; height: auto;" />
</div>
]
.panel[.panel-name[Colter Bay Ramp]
<div style="text-align: center;">
<img src="img/colterbay_close.PNG" style="width: 60%; height: auto;" />
</div>
]
.panel[.panel-name[Ramp Diagram]
<div style="text-align: center;">
<img src="img/ramp_diagram.PNG" style="width: 60%; height: auto;" />
</div>
]
.panel[.panel-name[Level]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r plotly_level_1}
ts_plotly(list(level_ts_d), ylab = "level (ft)", title = "Jackson Lake level (Daily)", colors = c("#6FB1D1"), plot_height = 415, plot_width = 800) %>%
add_lines(x = ~Date, y = rep(6753, nrow(as_tsibble(level_ts_d))), line = list(color = 'goldenrod'))
```
</div>
]
]
---
<div class="logo"></div>
# Daily Lag
<div style="text-align: center;">
<img src="img/daily_lv_lag.PNG" style="width: 600px; height: 525px;" />
</div>
---
<div class="logo"></div>
# Monthly Lag
<div style="text-align: center;">
<img src="img/monthly_lv_lag.PNG" style="width: 600px; height: 525px;" />
</div>
---
<div class="logo"></div>
# Yearly Lag
<div style="text-align: center;">
<img src="img/yearly_lv_lag.PNG" style="width: 600px; height: 525px;" />
</div>
---
<div class="logo"></div>
# Objectives
- Are we trying to nail prediction on a fine resolution?
--
- Are we trying to be able to alert boaters months in advance if we think its going to be a good boating season.
--
- Or, ...
--
- Are we trying to capture the long term viability of the ramp, monthly point estimates are not so important. Trending up or Down?
--
- Or both!
---
<div class="logo"></div>
# Short Term
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r}
load(paste0(R_data, "lv_fcast_ARIMA_m.Rdata"))
plotlyF_plot(
lv_split_m$train,
lv_split_m$test,
lv_fcast_ARIMA_m,
1979,
paste0(lv_fcast_ARIMA_m$method, ", ", Frq2W(lv_fcast_ARIMA_m$method), " Level Forecast"),
"",
"Level, ft",
plot_height = 525,
plot_width = 950,
f2l = FALSE
)
```
</div>
---
# Short Term with Moran Predictor
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r}
load("/Users/danielhintz/Dropbox/UNI/WEST_int/data/ARIMA_lv_Moran.Rdata")
plotlyF_plot(
trian_87_m,
test_87_m,
lv_fcast_ARIMA_m3,
1979,
"Regression with ARIMA(1,0,2)(2,0,0)[12], 8 Year backcast",
"",
"Level, ft",
plot_height = 525,
plot_width = 950,
f2l = FALSE
)
```
</div>
---
<div class="logo"></div>
# Short Term with Moran Predictor
```{r,message=FALSE, warning=FALSE}
tsibble::as_tsibble(lv_fcast_ARIMA_m3$mean) %>%
GG_subseries(value, period = 12) +
geom_hline(
yintercept = 6753,
color = "#FACC3F",
linetype = "dashed",
size = 1.2
)
```
---
<div class="logo"></div>
# Long term
.panelset[
.panel[.panel-name[Sub-Series]
<div style="text-align: center;">
<img src="img/Level_subseries.png" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[ARIMA]
<div style="text-align: center;">
<img src="img/ARIMA_30y_noCov.PNG" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[SNAIVE]
<div style="text-align: center;">
<img src="img/SNAIVE_30y.PNG" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[SNAIVE Sub-Series]
<div style="text-align: center;">
<img src="img/SNAIVE_subseries.PNG" style="width: 70%; height: 400px;" />
</div>
]
.panel[.panel-name[ARIMA Sub-Series]
<div style="text-align: center;">
<img src="img/ARIMA_subseries.PNG" style="width: 70%; height: 400px;" />
</div>
]
]
<!-- text immediately below ??? is present note accessible from presenter mode from hitting P-->
???
- Why am I showing you forecasts that are clearly bad?
- Because we need covariates that capture information that allows for drift and non-stationary in our forecasts
- So what might they those covariates/variables be?
- For that we might need your insights
<!-- there is no symbol to end presenter comments-->
---
<div class="logo"></div>
# System Drivers
.panelset[
.panel[.panel-name[Predictors]
- So far, we have looked at:
- Deficit
- Outflow
]
.panel[.panel-name[Deficit vs Outflow]
<div style="text-align: center;">
<img src="img/deficit_vs_outflow.jpg" style="width: 70%; height: auto;" />
</div>
]
.panel[.panel-name[Level]
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r plotly_level_2}
ts_plotly(list(level_ts_d), ylab = "level (ft)", title = "Jackson Lake level (Daily)",colors = c("#6FB1D1"),plot_height = 415, plot_width = 800)
```
</div>
]
.panel[.panel-name[ARIMA]
<div style="text-align: center;">
<img src="img/ARIMA_30y_noCov.PNG" style="width: 70%; height: auto;" />
</div>
]
]
---
<div class="logo"></div>
# Missing Information?
.pull-left[
<div style="text-align: center;">
<h2 style="font-size: 16px;">Wyoming Drought Index</h2>
<img src="img/drought_index.PNG" style="width: 600px; height: 500px;" />
</div>
]
.pull-right[
<div id="htmlwidget_container" class="plotly html-widget" style="position: relative; width: 700px; height: 500px;">
```{r plotly_level_3}
ts_plotly(list(level_ts_d), ylab = "level (ft)", title = "Jackson Lake level (Daily)",colors = c("#6FB1D1"),plot_height = 540, plot_width = 500) %>%
add_lines(x = ~Date, y = rep(6753, nrow(as_tsibble(level_ts_d))), line = list(color = 'goldenrod'))
```
</div>
]
---
class: center, middle
# Thank You